These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 32697396)

  • 1. Active Bicomponent Nanoparticle Assembly with Temporal, Microstructural, and Functional Control.
    Dhiman S; Singh A; George SJ
    Chemistry; 2021 Jan; 27(2):705-711. PubMed ID: 32697396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic temporal self-assembly via fuel-driven controlled supramolecular polymerization.
    Mishra A; Korlepara DB; Kumar M; Jain A; Jonnalagadda N; Bejagam KK; Balasubramanian S; George SJ
    Nat Commun; 2018 Mar; 9(1):1295. PubMed ID: 29602946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox-Mediated, Transient Supramolecular Charge-Transfer Gel and Ink.
    Dhiman S; Jalani K; George SJ
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):5259-5264. PubMed ID: 31804791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of Stimuli-Responsive Functional Materials via Hierarchical Self-Assembly Involving Coordination Interactions.
    Chen LJ; Yang HB
    Acc Chem Res; 2018 Nov; 51(11):2699-2710. PubMed ID: 30285407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supramolecular layer-by-layer assembly of 3D multicomponent nanostructures via multivalent molecular recognition.
    Ling XY; Phang IY; Reinhoudt DN; Vancso GJ; Huskens J
    Int J Mol Sci; 2008 Apr; 9(4):486-497. PubMed ID: 19325764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioinspired temporal supramolecular polymerization.
    Dhiman S; Sarkar A; George SJ
    RSC Adv; 2018 May; 8(34):18913-18925. PubMed ID: 35539685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-assembly of a multicomponent network of nanofiber-wrapped nanotubes.
    Mason ML; Lin T; Linville JJ; Parquette JR
    Nanoscale; 2022 Mar; 14(12):4531-4537. PubMed ID: 35258058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Sorted, Random, and Block Supramolecular Copolymers via Sequence Controlled, Multicomponent Self-Assembly.
    Sarkar A; Sasmal R; Empereur-Mot C; Bochicchio D; Kompella SVK; Sharma K; Dhiman S; Sundaram B; Agasti SS; Pavan GM; George SJ
    J Am Chem Soc; 2020 Apr; 142(16):7606-7617. PubMed ID: 32233467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATP-Driven Synthetic Supramolecular Assemblies: From ATP as a Template to Fuel.
    Mishra A; Dhiman S; George SJ
    Angew Chem Int Ed Engl; 2021 Feb; 60(6):2740-2756. PubMed ID: 32519456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gold nanoparticle self-assembly in two-component lipid Langmuir monolayers.
    Mogilevsky A; Jelinek R
    Langmuir; 2011 Feb; 27(4):1260-8. PubMed ID: 21050012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrostatic assembly of a multicomponent peptide/amphiphile nanotube.
    Linville JJ; Mason ML; Lopez-Torres EU; Parquette JR
    Nanoscale; 2024 Feb; 16(6):2894-2903. PubMed ID: 37990928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the complexity of supramolecular interactions for patterning at the liquid-solid interface.
    Mali KS; Adisoejoso J; Ghijsens E; De Cat I; De Feyter S
    Acc Chem Res; 2012 Aug; 45(8):1309-20. PubMed ID: 22612471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multicomponent self-assembly as a tool to harness new properties from peptides and proteins in material design.
    Okesola BO; Mata A
    Chem Soc Rev; 2018 May; 47(10):3721-3736. PubMed ID: 29697727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peptide Tectonics: Encoded Structural Complementarity Dictates Programmable Self-Assembly.
    Lou S; Wang X; Yu Z; Shi L
    Adv Sci (Weinh); 2019 Jul; 6(13):1802043. PubMed ID: 31380179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ionic Complexes of Metal Oxide Clusters for Versatile Self-Assemblies.
    Li B; Li W; Li H; Wu L
    Acc Chem Res; 2017 Jun; 50(6):1391-1399. PubMed ID: 28508633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible Self-Assembly of Nanoprobes in Live Cells for Dynamic Intracellular pH Imaging.
    Dong B; Du S; Wang C; Fu H; Li Q; Xiao N; Yang J; Xue X; Cai W; Liu D
    ACS Nano; 2019 Feb; 13(2):1421-1432. PubMed ID: 30730703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adenosine-Phosphate-Fueled, Temporally Programmed Supramolecular Polymers with Multiple Transient States.
    Dhiman S; Jain A; Kumar M; George SJ
    J Am Chem Soc; 2017 Nov; 139(46):16568-16575. PubMed ID: 28845662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal switching of an amphiphilic self-assembly by a chemical fuel-driven conformational response.
    Jalani K; Dhiman S; Jain A; George SJ
    Chem Sci; 2017 Aug; 8(9):6030-6036. PubMed ID: 28989632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic Self-Assembly of Gold/Polymer Nanocomposites: pH-Encoded Switching between 1D Nanowires and 3D Nanosponges.
    Zhang Q; Xu TY; Zhao CX; Jin WH; Wang Q; Qu DH
    Chem Asian J; 2017 Oct; 12(19):2549-2553. PubMed ID: 28810054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reciprocal Self-Assembly of Peptide-DNA Conjugates into a Programmable Sub-10-nm Supramolecular Deoxyribonucleoprotein.
    Kye M; Lim YB
    Angew Chem Int Ed Engl; 2016 Sep; 55(39):12003-7. PubMed ID: 27553897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.