These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 32697396)

  • 21. Diverse Supramolecular Nanofiber Networks Assembled by Functional Low-Complexity Domains.
    An B; Wang X; Cui M; Gui X; Mao X; Liu Y; Li K; Chu C; Pu J; Ren S; Wang Y; Zhong G; Lu TK; Liu C; Zhong C
    ACS Nano; 2017 Jul; 11(7):6985-6995. PubMed ID: 28609612
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Smart Nanocages as a Tool for Controlling Supramolecular Aggregation.
    Picchetti P; Moreno-Alcántar G; Talamini L; Mourgout A; Aliprandi A; De Cola L
    J Am Chem Soc; 2021 May; 143(20):7681-7687. PubMed ID: 33891394
    [TBL] [Abstract][Full Text] [Related]  

  • 23. pH-programmable self-assembly of plasmonic nanoparticles: hydrophobic interaction versus electrostatic repulsion.
    Li W; Kanyo I; Kuo CH; Thanneeru S; He J
    Nanoscale; 2015 Jan; 7(3):956-64. PubMed ID: 25463509
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Supramolecular Chemistry in Microflow Fields: Toward a New Material World of Precise Kinetic Control.
    Numata M
    Chem Asian J; 2015 Dec; 10(12):2574-88. PubMed ID: 26288064
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stimuli-Responsive DNA-Linked Nanoparticle Arrays as Programmable Surfaces.
    Myers BD; Palacios E; Myers DI; Butun S; Aydin K; Dravid VP
    Nano Lett; 2019 Jul; 19(7):4535-4542. PubMed ID: 31184155
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Programmed Self-Assembly of Hierarchical Nanostructures through Protein-Nanoparticle Coengineering.
    Mout R; Yesilbag Tonga G; Wang LS; Ray M; Roy T; Rotello VM
    ACS Nano; 2017 Apr; 11(4):3456-3462. PubMed ID: 28225593
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Supra-Nanoparticle Functional Assemblies through Programmable Stacking.
    Tian C; Cordeiro MAL; Lhermitte J; Xin HL; Shani L; Liu M; Ma C; Yeshurun Y; DiMarzio D; Gang O
    ACS Nano; 2017 Jul; 11(7):7036-7048. PubMed ID: 28541660
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Soft Materials with Diverse Suprastructures via the Self-Assembly of Metal-Organic Complexes.
    Sun Y; Chen C; Stang PJ
    Acc Chem Res; 2019 Mar; 52(3):802-817. PubMed ID: 30794371
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Liquid-cell scanning transmission electron microscopy and fluorescence correlation spectroscopy of DNA-directed gold nanoparticle assemblies.
    Jungjohann KL; Wheeler DR; Polsky R; Brozik SM; Brozik JA; Rudolph AR
    Micron; 2019 Apr; 119():54-63. PubMed ID: 30660856
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetic trapping - a strategy for directing the self-assembly of unique functional nanostructures.
    Yan Y; Huang J; Tang BZ
    Chem Commun (Camb); 2016 Oct; 52(80):11870-84. PubMed ID: 27494003
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cooperative Self-Assembly Transfer from Hierarchical Supramolecular Polymers to Gold Nanoparticles.
    Coelho JP; Tardajos G; Stepanenko V; Rödle A; Fernández G; Guerrero-Martínez A
    ACS Nano; 2015 Nov; 9(11):11241-8. PubMed ID: 26493583
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two-component gel-phase materials--highly tunable self-assembling systems.
    Hirst AR; Smith DK
    Chemistry; 2005 Sep; 11(19):5496-508. PubMed ID: 15966031
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deciphering the Rules for Amino Acid Co-Assembly Based on Interlayer Distances.
    Bera S; Mondal S; Tang Y; Jacoby G; Arad E; Guterman T; Jelinek R; Beck R; Wei G; Gazit E
    ACS Nano; 2019 Feb; 13(2):1703-1712. PubMed ID: 30673213
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multicomponent Self-Assembly of Metallo-Supramolecular Macrocycles and Cages through Dynamic Heteroleptic Terpyridine Complexation.
    Wang SY; Huang JY; Liang YP; He YJ; Chen YS; Zhan YY; Hiraoka S; Liu YH; Peng SM; Chan YT
    Chemistry; 2018 Jul; 24(37):9274-9284. PubMed ID: 29714039
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Toward self-constructing materials: a systems chemistry approach.
    Giuseppone N
    Acc Chem Res; 2012 Dec; 45(12):2178-88. PubMed ID: 22533472
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Encoding Reversible Hierarchical Structures with Supramolecular Peptide-DNA Materials.
    Daly ML; Gao Y; Freeman R
    Bioconjug Chem; 2019 Jul; 30(7):1864-1869. PubMed ID: 31181892
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Towards supramolecular engineering of functional nanomaterials: pre-programming multi-component 2D self-assembly at solid-liquid interfaces.
    Ciesielski A; Palma CA; Bonini M; Samorì P
    Adv Mater; 2010 Aug; 22(32):3506-20. PubMed ID: 20626011
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional supramolecular assemblies derived from dendritic building blocks.
    Park C; Lee J; Kim C
    Chem Commun (Camb); 2011 Nov; 47(44):12042-56. PubMed ID: 21785775
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Controlling Supramolecular Chirality in Multicomponent Self-Assembled Systems.
    Xing P; Zhao Y
    Acc Chem Res; 2018 Sep; 51(9):2324-2334. PubMed ID: 30179457
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrically Fueled Active Supramolecular Materials.
    Selmani S; Schwartz E; Mulvey JT; Wei H; Grosvirt-Dramen A; Gibson W; Hochbaum AI; Patterson JP; Ragan R; Guan Z
    J Am Chem Soc; 2022 May; 144(17):7844-7851. PubMed ID: 35446034
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.