These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 32697396)
21. Diverse Supramolecular Nanofiber Networks Assembled by Functional Low-Complexity Domains. An B; Wang X; Cui M; Gui X; Mao X; Liu Y; Li K; Chu C; Pu J; Ren S; Wang Y; Zhong G; Lu TK; Liu C; Zhong C ACS Nano; 2017 Jul; 11(7):6985-6995. PubMed ID: 28609612 [TBL] [Abstract][Full Text] [Related]
22. Smart Nanocages as a Tool for Controlling Supramolecular Aggregation. Picchetti P; Moreno-Alcántar G; Talamini L; Mourgout A; Aliprandi A; De Cola L J Am Chem Soc; 2021 May; 143(20):7681-7687. PubMed ID: 33891394 [TBL] [Abstract][Full Text] [Related]
23. pH-programmable self-assembly of plasmonic nanoparticles: hydrophobic interaction versus electrostatic repulsion. Li W; Kanyo I; Kuo CH; Thanneeru S; He J Nanoscale; 2015 Jan; 7(3):956-64. PubMed ID: 25463509 [TBL] [Abstract][Full Text] [Related]
24. Supramolecular Chemistry in Microflow Fields: Toward a New Material World of Precise Kinetic Control. Numata M Chem Asian J; 2015 Dec; 10(12):2574-88. PubMed ID: 26288064 [TBL] [Abstract][Full Text] [Related]
26. Programmed Self-Assembly of Hierarchical Nanostructures through Protein-Nanoparticle Coengineering. Mout R; Yesilbag Tonga G; Wang LS; Ray M; Roy T; Rotello VM ACS Nano; 2017 Apr; 11(4):3456-3462. PubMed ID: 28225593 [TBL] [Abstract][Full Text] [Related]
27. Supra-Nanoparticle Functional Assemblies through Programmable Stacking. Tian C; Cordeiro MAL; Lhermitte J; Xin HL; Shani L; Liu M; Ma C; Yeshurun Y; DiMarzio D; Gang O ACS Nano; 2017 Jul; 11(7):7036-7048. PubMed ID: 28541660 [TBL] [Abstract][Full Text] [Related]
28. Soft Materials with Diverse Suprastructures via the Self-Assembly of Metal-Organic Complexes. Sun Y; Chen C; Stang PJ Acc Chem Res; 2019 Mar; 52(3):802-817. PubMed ID: 30794371 [TBL] [Abstract][Full Text] [Related]
29. Liquid-cell scanning transmission electron microscopy and fluorescence correlation spectroscopy of DNA-directed gold nanoparticle assemblies. Jungjohann KL; Wheeler DR; Polsky R; Brozik SM; Brozik JA; Rudolph AR Micron; 2019 Apr; 119():54-63. PubMed ID: 30660856 [TBL] [Abstract][Full Text] [Related]
30. Kinetic trapping - a strategy for directing the self-assembly of unique functional nanostructures. Yan Y; Huang J; Tang BZ Chem Commun (Camb); 2016 Oct; 52(80):11870-84. PubMed ID: 27494003 [TBL] [Abstract][Full Text] [Related]
31. Cooperative Self-Assembly Transfer from Hierarchical Supramolecular Polymers to Gold Nanoparticles. Coelho JP; Tardajos G; Stepanenko V; Rödle A; Fernández G; Guerrero-Martínez A ACS Nano; 2015 Nov; 9(11):11241-8. PubMed ID: 26493583 [TBL] [Abstract][Full Text] [Related]
37. Towards supramolecular engineering of functional nanomaterials: pre-programming multi-component 2D self-assembly at solid-liquid interfaces. Ciesielski A; Palma CA; Bonini M; Samorì P Adv Mater; 2010 Aug; 22(32):3506-20. PubMed ID: 20626011 [TBL] [Abstract][Full Text] [Related]
38. Functional supramolecular assemblies derived from dendritic building blocks. Park C; Lee J; Kim C Chem Commun (Camb); 2011 Nov; 47(44):12042-56. PubMed ID: 21785775 [TBL] [Abstract][Full Text] [Related]