BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 32697401)

  • 1. Photo-biohydrogen Production by Photosensitization with Biologically Precipitated Cadmium Sulfide in Hydrogen-Forming Recombinant Escherichia coli.
    Honda Y; Shinohara Y; Watanabe M; Ishihara T; Fujii H
    Chembiochem; 2020 Dec; 21(23):3389-3397. PubMed ID: 32697401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron transfer kinetics in CdS nanorod-[FeFe]-hydrogenase complexes and implications for photochemical H₂ generation.
    Wilker MB; Shinopoulos KE; Brown KA; Mulder DW; King PW; Dukovic G
    J Am Chem Soc; 2014 Mar; 136(11):4316-24. PubMed ID: 24564271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competition between electron transfer, trapping, and recombination in CdS nanorod-hydrogenase complexes.
    Utterback JK; Wilker MB; Brown KA; King PW; Eaves JD; Dukovic G
    Phys Chem Chem Phys; 2015 Feb; 17(8):5538-42. PubMed ID: 25623885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Light-Driven Hydrogen Production by Self-Photosensitized Biohybrid Systems.
    Martins M; Toste C; Pereira IAC
    Angew Chem Int Ed Engl; 2021 Apr; 60(16):9055-9062. PubMed ID: 33450130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of photochemical processes for H2 production by CdS nanorod-[FeFe] hydrogenase complexes.
    Brown KA; Wilker MB; Boehm M; Dukovic G; King PW
    J Am Chem Soc; 2012 Mar; 134(12):5627-36. PubMed ID: 22352762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hybrid photocatalytic system comprising ZnS as light harvester and an [Fe(2)S(2)] hydrogenase mimic as hydrogen evolution catalyst.
    Wen F; Wang X; Huang L; Ma G; Yang J; Li C
    ChemSusChem; 2012 May; 5(5):849-53. PubMed ID: 22539196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photocatalytic hydrogen production of the CdS/TiO2-WO3 ternary hybrid under visible light irradiation.
    Chen YL; Lo SL; Chang HL; Yeh HM; Sun L; Oiu C
    Water Sci Technol; 2016; 73(7):1667-72. PubMed ID: 27054739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and enzymatic photo-activity of an O2 tolerant hydrogenase-CdSe@CdS quantum rod bioconjugate.
    Hamon C; Ciaccafava A; Infossi P; Puppo R; Even-Hernandez P; Lojou E; Marchi V
    Chem Commun (Camb); 2014 May; 50(39):4989-92. PubMed ID: 24468861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial biosynthesis of cadmium sulfide nanocrystals.
    Sweeney RY; Mao C; Gao X; Burt JL; Belcher AM; Georgiou G; Iverson BL
    Chem Biol; 2004 Nov; 11(11):1553-9. PubMed ID: 15556006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Augmented biosynthesis of cadmium sulfide nanoparticles by genetically engineered Escherichia coli.
    Chen YL; Tuan HY; Tien CW; Lo WH; Liang HC; Hu YC
    Biotechnol Prog; 2009; 25(5):1260-6. PubMed ID: 19630084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocatalytic etching of semiconductor cadmium sulfide nanoparticles as a new platform for the optical detection of analytes.
    Grinyte R; Saa L; Garai-Ibabe G; Pavlov V
    Chem Commun (Camb); 2015 Dec; 51(96):17152-5. PubMed ID: 26456861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbe manufacturers of semiconductors.
    Flenniken M; Allen M; Douglas T
    Chem Biol; 2004 Nov; 11(11):1478-80. PubMed ID: 15555996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Escherichia coli-based synthesis of cadmium sulfide nanoparticles, characterization, antimicrobial and cytotoxicity studies.
    Shivashankarappa A; Sanjay KR
    Braz J Microbiol; 2020 Sep; 51(3):939-948. PubMed ID: 32067210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exceptional poly(acrylic acid)-based artificial [FeFe]-hydrogenases for photocatalytic H2 production in water.
    Wang F; Liang WJ; Jian JX; Li CB; Chen B; Tung CH; Wu LZ
    Angew Chem Int Ed Engl; 2013 Jul; 52(31):8134-8. PubMed ID: 23788433
    [No Abstract]   [Full Text] [Related]  

  • 15. Synthesis, characterization and evaluation of visible light active cadmium sulfide-graphitic carbon nitride nanocomposite: A prospective solar light harvesting photo-catalyst for the deactivation of waterborne pathogen.
    Baig U; Hawsawi A; Ansari MA; Gondal MA; Dastageer MA; Falath WS
    J Photochem Photobiol B; 2020 Mar; 204():111783. PubMed ID: 31954265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterially driven cadmium sulfide precipitation on porous membranes: Toward platforms for photocatalytic applications.
    Marusak KE; Krug JR; Feng Y; Cao Y; You L; Zauscher S
    Biointerphases; 2018 Feb; 13(1):011006. PubMed ID: 29426227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopically characterized cadmium sulfide quantum dots lengthening the lag phase of Escherichia coli growth.
    Jaiganesh T; Rani JD; Girigoswami A
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jun; 92():29-32. PubMed ID: 22407211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved production of biohydrogen in light-powered Escherichia coli by co-expression of proteorhodopsin and heterologous hydrogenase.
    Kim JY; Jo BH; Jo Y; Cha HJ
    Microb Cell Fact; 2012 Jan; 11():2. PubMed ID: 22217184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application to Photocatalytic H2 Production of a Whole-Cell Reaction by Recombinant Escherichia coli Cells Expressing [FeFe]-Hydrogenase and Maturases Genes.
    Honda Y; Hagiwara H; Ida S; Ishihara T
    Angew Chem Int Ed Engl; 2016 Jul; 55(28):8045-8. PubMed ID: 27194524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cadmium-specific formation of metal sulfide 'Q-particles' by Klebsiella pneumoniae.
    Holmes JD; Richardson DJ; Saed S; Evans-Gowing R; Russell DA; Sodeau JR
    Microbiology (Reading); 1997 Aug; 143 ( Pt 8)():2521-2530. PubMed ID: 9274006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.