These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 32697577)
1. Rapid Identification of Marine Plastic Debris via Spectroscopic Techniques and Machine Learning Classifiers. Michel APM; Morrison AE; Preston VL; Marx CT; Colson BC; White HK Environ Sci Technol; 2020 Sep; 54(17):10630-10637. PubMed ID: 32697577 [TBL] [Abstract][Full Text] [Related]
2. Forensic soil analysis using laser-induced breakdown spectroscopy (LIBS) and Fourier transform infrared total attenuated reflectance spectroscopy (FTIR-ATR): Principles and case studies. Xu X; Du C; Ma F; Shen Y; Zhou J Forensic Sci Int; 2020 May; 310():110222. PubMed ID: 32193128 [TBL] [Abstract][Full Text] [Related]
3. Differential scanning calorimetry (DSC): An important tool for polymer identification and characterization of plastic marine debris. Lynch JM; Corniuk RN; Brignac KC; Jung MR; Sellona K; Marchiani J; Weatherford W Environ Pollut; 2024 Apr; 346():123607. PubMed ID: 38382730 [TBL] [Abstract][Full Text] [Related]
4. Application of Infrared Reflectance Spectroscopy on Plastics in Cultural Heritage Collections: A Comparative Assessment of Two Portable Mid-Fourier Transform Infrared Reflection Devices. Angelin EM; de Sá SF; Soares I; Callapez ME; Ferreira JL; Melo MJ; Bacci M; Picollo M Appl Spectrosc; 2021 Jul; 75(7):818-833. PubMed ID: 33599540 [TBL] [Abstract][Full Text] [Related]
5. Enhancing forensic investigations: Identifying bloodstains on various substrates through ATR-FTIR spectroscopy combined with machine learning algorithms. Wei CT; You JL; Weng SK; Jian SY; Lee JC; Chiang TL Spectrochim Acta A Mol Biomol Spectrosc; 2024 Mar; 308():123755. PubMed ID: 38101254 [TBL] [Abstract][Full Text] [Related]
6. Analysis of heterogeneous gallstones using laser-induced breakdown spectroscopy (LIBS) and wavelength dispersive X-ray fluorescence (WD-XRF). Jaswal BB; Kumar V; Sharma J; Rai PK; Gondal MA; Gondal B; Singh VK Lasers Med Sci; 2016 Apr; 31(3):573-9. PubMed ID: 26886588 [TBL] [Abstract][Full Text] [Related]
7. Rapid determination of vitamin C by NIR, MIR and FT-Raman techniques. Yang H; Irudayaraj J J Pharm Pharmacol; 2002 Sep; 54(9):1247-55. PubMed ID: 12356279 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of the moisture prediction capability of near-infrared and attenuated total reflectance fourier transform infrared spectroscopy using superdisintegrants as model compounds. Uppaluri SG; Bompelliwar SK; Johnson PR; Gupta MR; Al-Achi A; Stagner WC; Haware RV J Pharm Sci; 2014 Dec; 103(12):4012-4020. PubMed ID: 25332106 [TBL] [Abstract][Full Text] [Related]
9. Investigation of the potential utility of single-bounce attenuated total reflectance Fourier transform infrared spectroscopy in the analysis of distilled liquors and wines. Cocciardi RA; Ismail AA; Sedman J J Agric Food Chem; 2005 Apr; 53(8):2803-9. PubMed ID: 15826022 [TBL] [Abstract][Full Text] [Related]
10. Quantum cascade laser-based reflectance spectroscopy: a robust approach for the classification of plastic type. Michel APM; Morrison AE; Colson BC; Pardis WA; Moya XA; Harb CC; White HK Opt Express; 2020 Jun; 28(12):17741-17756. PubMed ID: 32679978 [TBL] [Abstract][Full Text] [Related]
11. Rapid detection of colored and colorless macro- and micro-plastics in complex environment via near-infrared spectroscopy and machine learning. Zou HH; He PJ; Peng W; Lan DY; Xian HY; Lü F; Zhang H J Environ Sci (China); 2025 Jan; 147():512-522. PubMed ID: 39003067 [TBL] [Abstract][Full Text] [Related]
12. Authentication of liquid egg composition using ATR-FTIR and NIR spectroscopy in combination with PCA. Uysal RS; Boyaci IH J Sci Food Agric; 2020 Jan; 100(2):855-862. PubMed ID: 31646648 [TBL] [Abstract][Full Text] [Related]
13. In-line identification of Pb-based pigments in fishing nets and ropes based on hyperspectral imaging and machine learning. Amariei G; Henriksen ML; Friis JB; Pedersen PK; Hinge M Mar Pollut Bull; 2023 Jun; 191():114910. PubMed ID: 37062129 [TBL] [Abstract][Full Text] [Related]
14. Reagent-Free Identification of Clinical Yeasts by Use of Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy. Lam LMT; Dufresne PJ; Longtin J; Sedman J; Ismail AA J Clin Microbiol; 2019 May; 57(5):. PubMed ID: 30787141 [TBL] [Abstract][Full Text] [Related]
15. Microplastics in Singapore's coastal mangrove ecosystems. Nor NH; Obbard JP Mar Pollut Bull; 2014 Feb; 79(1-2):278-83. PubMed ID: 24365455 [TBL] [Abstract][Full Text] [Related]
16. Identification of persistent oil residues in Prince William Sound, Alaska using rapid spectroscopic techniques. White HK; Morrison AE; Dhoonmoon C; Caballero-Gomez H; Luu M; Samuels C; Marx CT; Michel APM Mar Pollut Bull; 2020 Dec; 161(Pt B):111718. PubMed ID: 33038711 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of rice varieties using LIBS and FTIR techniques associated with PCA and machine learning algorithms. Ribeiro MCS; Senesi GS; Cabral JS; Cena C; Marangoni BS; Kiefer C; Nicolodelli G Appl Opt; 2020 Nov; 59(32):10043-10048. PubMed ID: 33175777 [TBL] [Abstract][Full Text] [Related]
18. Experimental detection of marine plastic litter in surface waters by 405 nm LD-based fluorescence lidar. Cadondon J; Vallar E; Shiina T; Galvez MC Mar Pollut Bull; 2024 Oct; 207():116842. PubMed ID: 39173473 [TBL] [Abstract][Full Text] [Related]
19. Isotope ratio mass spectrometry and spectroscopic techniques for microplastics characterization. Birch QT; Potter PM; Pinto PX; Dionysiou DD; Al-Abed SR Talanta; 2021 Mar; 224():121743. PubMed ID: 33379004 [TBL] [Abstract][Full Text] [Related]
20. Beach macro-litter monitoring and floating microplastic in a coastal area of Indonesia. Syakti AD; Bouhroum R; Hidayati NV; Koenawan CJ; Boulkamh A; Sulistyo I; Lebarillier S; Akhlus S; Doumenq P; Wong-Wah-Chung P Mar Pollut Bull; 2017 Sep; 122(1-2):217-225. PubMed ID: 28645761 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]