These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 32697589)

  • 1. How Exciton and Single Carriers Block the Excitonic Transition in Two-Dimensional Cadmium Chalcogenide Nanoplatelets.
    Li Q; He S; Lian T
    Nano Lett; 2020 Aug; 20(8):6162-6169. PubMed ID: 32697589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exciton Spatial Coherence and Optical Gain in Colloidal Two-Dimensional Cadmium Chalcogenide Nanoplatelets.
    Li Q; Lian T
    Acc Chem Res; 2019 Sep; 52(9):2684-2693. PubMed ID: 31433164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size-Dependent Biexciton Quantum Yields and Carrier Dynamics of Quasi-Two-Dimensional Core/Shell Nanoplatelets.
    Ma X; Diroll BT; Cho W; Fedin I; Schaller RD; Talapin DV; Gray SK; Wiederrecht GP; Gosztola DJ
    ACS Nano; 2017 Sep; 11(9):9119-9127. PubMed ID: 28787569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contributions of exciton fine structure and hole trapping on the hole state filling effect in the transient absorption spectra of CdSe quantum dots.
    He S; Li Q; Jin T; Lian T
    J Chem Phys; 2022 Feb; 156(5):054704. PubMed ID: 35135264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zero-Threshold Optical Gain in Electrochemically Doped Nanoplatelets and the Physics Behind It.
    Geuchies JJ; Dijkhuizen R; Koel M; Grimaldi G; du Fossé I; Evers WH; Hens Z; Houtepen AJ
    ACS Nano; 2022 Nov; 16(11):18777-18788. PubMed ID: 36256901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast Charge Separation in Two-Dimensional CsPbBr
    Li Q; Lian T
    J Phys Chem Lett; 2019 Feb; 10(3):566-573. PubMed ID: 30642172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Introducing Ag Dopants into CdSe Nanoplatelets (NPLs) Leads to Effective Charge Separation for Better Photodetector Performance.
    Ghosh S; Medda A; Patra A
    Chem Asian J; 2024 May; ():e202400528. PubMed ID: 38775420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic Evidence for the Contribution of Holes to the Bleach of Cd-Chalcogenide Quantum Dots.
    Grimaldi G; Geuchies JJ; van der Stam W; du Fossé I; Brynjarsson B; Kirkwood N; Kinge S; Siebbeles LDA; Houtepen AJ
    Nano Lett; 2019 May; 19(5):3002-3010. PubMed ID: 30938530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exciton Cooling in 2D Perovskite Nanoplatelets: Rationalized Carrier-Induced Stark and Phonon Bottleneck Effects.
    Villamil Franco C; Trippé-Allard G; Mahler B; Cornaggia C; Lauret JS; Gustavsson T; Cassette E
    J Phys Chem Lett; 2022 Jan; 13(1):393-399. PubMed ID: 34985898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface Modification of CdE (E: S, Se, and Te) Nanoplatelets to Reach Thicker Nanoplatelets and Homostructures with Confinement-Induced Intraparticle Type I Energy Level Alignment.
    Moghaddam N; Dabard C; Dufour M; Po H; Xu X; Pons T; Lhuillier E; Ithurria S
    J Am Chem Soc; 2021 Feb; 143(4):1863-1872. PubMed ID: 33471504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model for optical gain in colloidal nanoplatelets.
    Li Q; Lian T
    Chem Sci; 2018 Jan; 9(3):728-734. PubMed ID: 29629142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low Threshold Multiexciton Optical Gain in Colloidal CdSe/CdTe Core/Crown Type-II Nanoplatelet Heterostructures.
    Li Q; Xu Z; McBride JR; Lian T
    ACS Nano; 2017 Mar; 11(3):2545-2553. PubMed ID: 28157330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colloidal Synthesis of Laterally Confined Blue-Emitting 3.5 Monolayer CdSe Nanoplatelets.
    Di Giacomo A; Rodà C; Khan AH; Moreels I
    Chem Mater; 2020 Nov; 32(21):9260-9267. PubMed ID: 33191978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From dilute isovalent substitution to alloying in CdSeTe nanoplatelets.
    Tenne R; Pedetti S; Kazes M; Ithurria S; Houben L; Nadal B; Oron D; Dubertret B
    Phys Chem Chem Phys; 2016 Jun; 18(22):15295-303. PubMed ID: 27211113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exciton States and Optical Absorption in CdSe and PbS Nanoplatelets.
    Baghdasaryan DA; Harutyunyan VA; Hayrapetyan DB; Kazaryan EM; Baskoutas S; Sarkisyan HA
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Stable, Near-Unity Efficiency Atomically Flat Semiconductor Nanocrystals of CdSe/ZnS Hetero-Nanoplatelets Enabled by ZnS-Shell Hot-Injection Growth.
    Altintas Y; Quliyeva U; Gungor K; Erdem O; Kelestemur Y; Mutlugun E; Kovalenko MV; Demir HV
    Small; 2019 Feb; 15(8):e1804854. PubMed ID: 30701687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colloidal
    Wang L; Xiang D; Gao K; Wang J; Wu K
    J Phys Chem Lett; 2021 Nov; 12(46):11259-11266. PubMed ID: 34766755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Area-Independence of the Biexciton Oscillator Strength in CdSe Colloidal Nanoplatelets.
    Rodà C; Geiregat P; Di Giacomo A; Moreels I; Hens Z
    Nano Lett; 2022 Dec; 22(23):9537-9543. PubMed ID: 36409988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origin of Low Temperature Trion Emission in CdSe Nanoplatelets.
    Vong AF; Irgen-Gioro S; Wu Y; Weiss EA
    Nano Lett; 2021 Dec; 21(23):10040-10046. PubMed ID: 34843260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.