These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 32697590)
41. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries. Lee KT; Jeong S; Cho J Acc Chem Res; 2013 May; 46(5):1161-70. PubMed ID: 22509931 [TBL] [Abstract][Full Text] [Related]
42. Nontraditional, Safe, High Voltage Rechargeable Cells of Long Cycle Life. Braga MH; M Subramaniyam C; Murchison AJ; Goodenough JB J Am Chem Soc; 2018 May; 140(20):6343-6352. PubMed ID: 29688709 [TBL] [Abstract][Full Text] [Related]
43. Interfaces and Materials in Lithium Ion Batteries: Challenges for Theoretical Electrochemistry. Kasnatscheew J; Wagner R; Winter M; Cekic-Laskovic I Top Curr Chem (Cham); 2018 Apr; 376(3):16. PubMed ID: 29671099 [TBL] [Abstract][Full Text] [Related]
44. Operando observation of the gold-electrolyte interface in Li-O2 batteries. Gittleson FS; Ryu WH; Taylor AD ACS Appl Mater Interfaces; 2014 Nov; 6(21):19017-25. PubMed ID: 25318060 [TBL] [Abstract][Full Text] [Related]
45. Stabilizing LiCoO Wu S; Lin Y; Xing L; Sun G; Zhou H; Xu K; Fan W; Yu L; Li W ACS Appl Mater Interfaces; 2019 May; 11(19):17940-17951. PubMed ID: 30990302 [TBL] [Abstract][Full Text] [Related]
46. Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries. Li W; Dolocan A; Oh P; Celio H; Park S; Cho J; Manthiram A Nat Commun; 2017 Apr; 8():14589. PubMed ID: 28443608 [TBL] [Abstract][Full Text] [Related]
48. Understanding the Surface Film Formation on Si Electrodes in Lithium Secondary Batteries with Atomic Force Microscopy. Song HY; Kim SS; Nogales PM; Jeong SK J Nanosci Nanotechnol; 2020 Aug; 20(8):4985-4989. PubMed ID: 32126686 [TBL] [Abstract][Full Text] [Related]
49. Energy Level Alignment at the Cobalt Phosphate/Electrolyte Interface: Intrinsic Stability vs Interfacial Chemical Reactions in 5 V Lithium Ion Batteries. Cherkashinin G; Eilhardt R; Nappini S; Cococcioni M; Píš I; Dal Zilio S; Bondino F; Marzari N; Magnano E; Alff L ACS Appl Mater Interfaces; 2022 Jan; 14(1):543-556. PubMed ID: 34932299 [TBL] [Abstract][Full Text] [Related]
50. Asymmetric pathways in the electrochemical conversion reaction of NiO as battery electrode with high storage capacity. Boesenberg U; Marcus MA; Shukla AK; Yi T; McDermott E; Teh PF; Srinivasan M; Moewes A; Cabana J Sci Rep; 2014 Nov; 4():7133. PubMed ID: 25410966 [TBL] [Abstract][Full Text] [Related]
51. Structure formation and surface chemistry of ionic liquids on model electrode surfaces-Model studies for the electrode Buchner F; Uhl B; Forster-Tonigold K; Bansmann J; Groß A; Behm RJ J Chem Phys; 2018 May; 148(19):193821. PubMed ID: 30307189 [TBL] [Abstract][Full Text] [Related]
52. Insight into the Contribution of Nitriles as Electrolyte Additives to the Improved Performances of the LiCoO Li T; Lin J; Xing L; Zhong Y; Chai H; Yang W; Li J; Fan W; Zhao J; Li W J Phys Chem Lett; 2022 Sep; 13(37):8801-8807. PubMed ID: 36106726 [TBL] [Abstract][Full Text] [Related]
53. Conventional Electrolyte and Inactive Electrode Materials in Lithium-Ion Batteries: Determining Cumulative Impact of Oxidative Decomposition at High Voltage. Streipert B; Stolz L; Homann G; Janßen P; Cekic-Laskovic I; Winter M; Kasnatscheew J ChemSusChem; 2020 Oct; 13(19):5301-5307. PubMed ID: 32692891 [TBL] [Abstract][Full Text] [Related]
54. Revealing the Dual Surface Reactions on a HE-NCM Li-Ion Battery Cathode and Their Impact on the Surface Chemistry of the Counter Electrode. Leanza D; Vaz CAF; Melinte G; Mu X; Novák P; El Kazzi M ACS Appl Mater Interfaces; 2019 Feb; 11(6):6054-6065. PubMed ID: 30661351 [TBL] [Abstract][Full Text] [Related]
55. Spatially resolved surface valence gradient and structural transformation of lithium transition metal oxides in lithium-ion batteries. Liu H; Bugnet M; Tessaro MZ; Harris KJ; Dunham MJ; Jiang M; Goward GR; Botton GA Phys Chem Chem Phys; 2016 Oct; 18(42):29064-29075. PubMed ID: 27711529 [TBL] [Abstract][Full Text] [Related]
56. The Role of Cations on the Performance of Lithium Ion Batteries: A Quantitative Analytical Approach. Nowak S; Winter M Acc Chem Res; 2018 Feb; 51(2):265-272. PubMed ID: 29381052 [TBL] [Abstract][Full Text] [Related]
57. Li-rich Li-Si alloy as a lithium-containing negative electrode material towards high energy lithium-ion batteries. Iwamura S; Nishihara H; Ono Y; Morito H; Yamane H; Nara H; Osaka T; Kyotani T Sci Rep; 2015 Jan; 5():8085. PubMed ID: 25626879 [TBL] [Abstract][Full Text] [Related]
58. Facile conversion of commercial coarse-type LiCoO2 to nanocomposite-separated nanolayer architectures as a way for electrode performance enhancement. Zhao Y; Sha Y; Lin Q; Zhong Y; Tade MO; Shao Z ACS Appl Mater Interfaces; 2015 Jan; 7(3):1787-94. PubMed ID: 25561439 [TBL] [Abstract][Full Text] [Related]
59. Direct visualization of solid electrolyte interphase formation in lithium-ion batteries with in situ electrochemical transmission electron microscopy. Unocic RR; Sun XG; Sacci RL; Adamczyk LA; Alsem DH; Dai S; Dudney NJ; More KL Microsc Microanal; 2014 Aug; 20(4):1029-37. PubMed ID: 24994021 [TBL] [Abstract][Full Text] [Related]
60. Self-assembly of PEI/SiO2 on polyethylene separators for Li-ion batteries with enhanced rate capability. Wang Z; Guo F; Chen C; Shi L; Yuan S; Sun L; Zhu J ACS Appl Mater Interfaces; 2015 Feb; 7(5):3314-22. PubMed ID: 25602261 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]