These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 32697722)

  • 1. Maximum Information Exploitation Using Broad Learning System for Large-Scale Chaotic Time-Series Prediction.
    Han M; Li W; Feng S; Qiu T; Chen CLP
    IEEE Trans Neural Netw Learn Syst; 2021 Jun; 32(6):2320-2329. PubMed ID: 32697722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust manifold broad learning system for large-scale noisy chaotic time series prediction: A perturbation perspective.
    Feng S; Ren W; Han M; Chen YW
    Neural Netw; 2019 Sep; 117():179-190. PubMed ID: 31170577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The combination of circle topology and leaky integrator neurons remarkably improves the performance of echo state network on time series prediction.
    Xue F; Li Q; Li X
    PLoS One; 2017; 12(7):e0181816. PubMed ID: 28759581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recurrent Broad Learning Systems for Time Series Prediction.
    Xu M; Han M; Chen CLP; Qiu T
    IEEE Trans Cybern; 2020 Apr; 50(4):1405-1417. PubMed ID: 30207976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constructing polynomial libraries for reservoir computing in nonlinear dynamical system forecasting.
    Ren HH; Bai YL; Fan MH; Ding L; Yue XX; Yu QH
    Phys Rev E; 2024 Feb; 109(2-1):024227. PubMed ID: 38491629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate and Efficient Large-Scale Multi-Label Learning With Reduced Feature Broad Learning System Using Label Correlation.
    Huang J; Vong CM; Chen CLP; Zhou Y
    IEEE Trans Neural Netw Learn Syst; 2023 Dec; 34(12):10240-10253. PubMed ID: 35436203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive balancing of exploration and exploitation around the edge of chaos in internal-chaos-based learning.
    Matsuki T; Shibata K
    Neural Netw; 2020 Dec; 132():19-29. PubMed ID: 32861145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical Echo State Network With Sparse Learning: A Method for Multidimensional Chaotic Time Series Prediction.
    Na X; Ren W; Liu M; Han M
    IEEE Trans Neural Netw Learn Syst; 2023 Nov; 34(11):9302-9313. PubMed ID: 35333719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interpretable predictions of chaotic dynamical systems using dynamical system deep learning.
    Wang M; Li J
    Sci Rep; 2024 Feb; 14(1):3143. PubMed ID: 38326451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining machine learning with knowledge-based modeling for scalable forecasting and subgrid-scale closure of large, complex, spatiotemporal systems.
    Wikner A; Pathak J; Hunt B; Girvan M; Arcomano T; Szunyogh I; Pomerance A; Ott E
    Chaos; 2020 May; 30(5):053111. PubMed ID: 32491877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping topological characteristics of dynamical systems into neural networks: A reservoir computing approach.
    Chen X; Weng T; Yang H; Gu C; Zhang J; Small M
    Phys Rev E; 2020 Sep; 102(3-1):033314. PubMed ID: 33075895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New perspectives for the prediction and statistical quantification of extreme events in high-dimensional dynamical systems.
    Sapsis TP
    Philos Trans A Math Phys Eng Sci; 2018 Aug; 376(2127):. PubMed ID: 30037931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling nonlinear dynamical systems into arbitrary states using machine learning.
    Haluszczynski A; Räth C
    Sci Rep; 2021 Jun; 11(1):12991. PubMed ID: 34155228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developing a local least-squares support vector machines-based neuro-fuzzy model for nonlinear and chaotic time series prediction.
    Miranian A; Abdollahzade M
    IEEE Trans Neural Netw Learn Syst; 2013 Feb; 24(2):207-18. PubMed ID: 24808276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting the dynamical behaviors for chaotic semiconductor lasers by reservoir computing.
    Li XZ; Sheng B; Zhang M
    Opt Lett; 2022 Jun; 47(11):2822-2825. PubMed ID: 35648939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transfer learning of chaotic systems.
    Guo Y; Zhang H; Wang L; Fan H; Xiao J; Wang X
    Chaos; 2021 Jan; 31(1):011104. PubMed ID: 33754764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of next-generation reservoir computing for predicting chaotic systems from partial observations.
    Ratas I; Pyragas K
    Phys Rev E; 2024 Jun; 109(6-1):064215. PubMed ID: 39021034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting observed and hidden extreme events in complex nonlinear dynamical systems with partial observations and short training time series.
    Chen N; Majda AJ
    Chaos; 2020 Mar; 30(3):033101. PubMed ID: 32237755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time series reconstructing using calibrated reservoir computing.
    Chen Y; Qian Y; Cui X
    Sci Rep; 2022 Sep; 12(1):16318. PubMed ID: 36175460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visibility graphlet approach to chaotic time series.
    Mutua S; Gu C; Yang H
    Chaos; 2016 May; 26(5):053107. PubMed ID: 27249947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.