These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 32697722)

  • 41. Cross-predicting the dynamics of an optically injected single-mode semiconductor laser using reservoir computing.
    Cunillera A; Soriano MC; Fischer I
    Chaos; 2019 Nov; 29(11):113113. PubMed ID: 31779359
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Predictability of extreme events in a nonlinear stochastic-dynamical model.
    Franzke C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031134. PubMed ID: 22587065
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Parameter extraction with reservoir computing: Nonlinear time series analysis and application to industrial maintenance.
    Thorne B; Jüngling T; Small M; Hodkiewicz M
    Chaos; 2021 Mar; 31(3):033122. PubMed ID: 33810743
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chaotic transition of random dynamical systems and chaos synchronization by common noises.
    Rim S; Hwang DU; Kim I; Kim CM
    Phys Rev Lett; 2000 Sep; 85(11):2304-7. PubMed ID: 10977997
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Alternation of regular and chaotic dynamics in a simple two-degree-of-freedom system with nonlinear inertial coupling.
    Sigalov G; Gendelman OV; AL-Shudeifat MA; Manevitch LI; Vakakis AF; Bergman LA
    Chaos; 2012 Mar; 22(1):013118. PubMed ID: 22462994
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random networks.
    Feng CF; Xu XJ; Wang SJ; Wang YH
    Chaos; 2008 Jun; 18(2):023117. PubMed ID: 18601484
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Simulation of variational Gaussian process NARX models with GPGPU.
    Krivec T; Papa G; Kocijan J
    ISA Trans; 2021 Mar; 109():141-151. PubMed ID: 33059907
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A cascading method for constructing new discrete chaotic systems with better randomness.
    Yuan F; Deng Y; Li Y; Chen G
    Chaos; 2019 May; 29(5):053120. PubMed ID: 31154765
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Predicting amplitude death with machine learning.
    Xiao R; Kong LW; Sun ZK; Lai YC
    Phys Rev E; 2021 Jul; 104(1-1):014205. PubMed ID: 34412238
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Detecting anomalous phase synchronization from time series.
    Tokuda IT; Kumar Dana S; Kurths J
    Chaos; 2008 Jun; 18(2):023134. PubMed ID: 18601500
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Good and bad predictions: Assessing and improving the replication of chaotic attractors by means of reservoir computing.
    Haluszczynski A; Räth C
    Chaos; 2019 Oct; 29(10):103143. PubMed ID: 31675800
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Datasets for learning of unknown characteristics of dynamical systems.
    Szczęsna A; Augustyn D; Harężlak K; Josiński H; Świtoński A; Kasprowski P
    Sci Data; 2023 Feb; 10(1):79. PubMed ID: 36750577
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chaotic itinerancy in coupled dynamical recognizers.
    Ikegami T; Morimoto G
    Chaos; 2003 Sep; 13(3):1133-47. PubMed ID: 12946206
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Perturbation-free prediction of resonance-assisted tunneling in mixed regular-chaotic systems.
    Mertig N; Kullig J; Löbner C; Bäcker A; Ketzmerick R
    Phys Rev E; 2016 Dec; 94(6-1):062220. PubMed ID: 28085465
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Introduction to a topical issue 'nonlinear energy transfer in dynamical and acoustical Systems'.
    Gendelman OV; Vakakis AF
    Philos Trans A Math Phys Eng Sci; 2018 Aug; 376(2127):. PubMed ID: 30037927
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Recovery of chaotic tunneling due to destruction of dynamical localization by external noise.
    Ishikawa A; Tanaka A; Shudo A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046204. PubMed ID: 19905412
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synchronization of chaotic systems and their machine-learning models.
    Weng T; Yang H; Gu C; Zhang J; Small M
    Phys Rev E; 2019 Apr; 99(4-1):042203. PubMed ID: 31108603
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chaos and quantum mechanics.
    Habib S; Bhattacharya T; Greenbaum B; Jacobs K; Shizume K; Sundaram B
    Ann N Y Acad Sci; 2005 Jun; 1045():308-32. PubMed ID: 15980320
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dynamical characterization of chaotic itinerancy in a three-mode laser subjected to frequency-shifted optical feedback.
    Miyasaka Y; Otsuka K; Maniwa T; Ko JY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046208. PubMed ID: 15600496
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.