These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 32697833)

  • 21. Aerodynamic robustness in owl-inspired leading-edge serrations: a computational wind-gust model.
    Rao C; Liu H
    Bioinspir Biomim; 2018 Jul; 13(5):056002. PubMed ID: 29882513
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flapping wing aerodynamics: from insects to vertebrates.
    Chin DD; Lentink D
    J Exp Biol; 2016 Apr; 219(Pt 7):920-32. PubMed ID: 27030773
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gliding flight: drag and torque of a hawk and a falcon with straight and turned heads, and a lower value for the parasite drag coefficient.
    Tucker VA
    J Exp Biol; 2000 Dec; 203(Pt 24):3733-44. PubMed ID: 11076737
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A comparative study of the mechanics of the pectoralis muscle of the red-tailed hawk and the barred owl.
    Peters SE; Dobbins CS
    J Morphol; 2012 Mar; 273(3):312-23. PubMed ID: 22025367
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evolutionary and Ecological Correlates of Quiet Flight in Nightbirds, Hawks, Falcons, and Owls.
    Clark CJ; LePiane K; Liu L
    Integr Comp Biol; 2020 Nov; 60(5):1123-1134. PubMed ID: 32426839
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protein electrophoresis as a diagnostic and prognostic tool in raptor medicine.
    Tatum LM; Zaias J; Mealey BK; Cray C; Bossart GD
    J Zoo Wildl Med; 2000 Dec; 31(4):497-502. PubMed ID: 11428396
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative aerodynamic performance of flapping flight in two bat species using time-resolved wake visualization.
    Muijres FT; Johansson LC; Winter Y; Hedenström A
    J R Soc Interface; 2011 Oct; 8(63):1418-28. PubMed ID: 21367776
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Helminth and ectoparasitic faunas of the Harris's hawk, Parabuteo unicinctus (Accipitriformes: Accipitridae), in Chile: new data on host-parasite associations for Neotropical raptors.
    Oyarzún-Ruiz P; Cifuentes-Castro C; Varas F; Grandón-Ojeda A; Cicchino A; Mironov S; Moreno L
    Rev Bras Parasitol Vet; 2022; 31(3):e007522. PubMed ID: 36000608
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On the Estimation of Time Dependent Lift of a European Starling (Sturnus vulgaris) during Flapping Flight.
    Stalnov O; Ben-Gida H; Kirchhefer AJ; Guglielmo CG; Kopp GA; Liberzon A; Gurka R
    PLoS One; 2015; 10(9):e0134582. PubMed ID: 26394213
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wing inertia and whole-body acceleration: an analysis of instantaneous aerodynamic force production in cockatiels (Nymphicus hollandicus) flying across a range of speeds.
    Hedrick TL; Usherwood JR; Biewener AA
    J Exp Biol; 2004 Apr; 207(Pt 10):1689-702. PubMed ID: 15073202
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evolution and Ecology of Silent Flight in Owls and Other Flying Vertebrates.
    Clark CJ; LePiane K; Liu L
    Integr Org Biol; 2020; 2(1):obaa001. PubMed ID: 33791545
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evidence that the Dorsal Velvet of Barn Owl Wing Feathers Decreases Rubbing Sounds during Flapping Flight.
    LePiane K; Clark CJ
    Integr Comp Biol; 2020 Nov; 60(5):1068-1079. PubMed ID: 32525524
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The humeroscapular bone of the great horned owl (Bubo virginianus) and other raptors.
    Smith BJ; Smith SA
    Anat Histol Embryol; 1992 Mar; 21(1):32-9. PubMed ID: 1585989
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wake analysis of aerodynamic components for the glide envelope of a jackdaw (Corvus monedula).
    KleinHeerenbrink M; Warfvinge K; Hedenström A
    J Exp Biol; 2016 May; 219(Pt 10):1572-81. PubMed ID: 26994178
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effects of wing twist in slow-speed flapping flight of birds: trading brute force against efficiency.
    Thielicke W; Stamhuis EJ
    Bioinspir Biomim; 2018 Aug; 13(5):056015. PubMed ID: 30043756
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The influence of wing-wake interactions on the production of aerodynamic forces in flapping flight.
    Birch JM; Dickinson MH
    J Exp Biol; 2003 Jul; 206(Pt 13):2257-72. PubMed ID: 12771174
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Visual abilities in two raptors with different ecology.
    Potier S; Bonadonna F; Kelber A; Martin GR; Isard PF; Dulaurent T; Duriez O
    J Exp Biol; 2016 Sep; 219(Pt 17):2639-49. PubMed ID: 27317812
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The complex aerodynamic footprint of desert locusts revealed by large-volume tomographic particle image velocimetry.
    Henningsson P; Michaelis D; Nakata T; Schanz D; Geisler R; Schröder A; Bomphrey RJ
    J R Soc Interface; 2015 Jul; 12(108):20150119. PubMed ID: 26040598
    [TBL] [Abstract][Full Text] [Related]  

  • 39. External parasites of raptors (Falconiformes and Strigiformes): identification in an ex situ population from Mexico.
    de Oliveira JB; Santos T; Vaughan C; Santiago H
    Rev Biol Trop; 2011 Sep; 59(3):1257-64. PubMed ID: 22017130
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lift calculations based on accepted wake models for animal flight are inconsistent and sensitive to vortex dynamics.
    Gutierrez E; Quinn DB; Chin DD; Lentink D
    Bioinspir Biomim; 2016 Dec; 12(1):016004. PubMed ID: 27921999
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.