These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32697833)

  • 41. Numerical assessment of wake-based estimation of instantaneous lift in flapping flight of large birds.
    Colognesi V; Ronsse R; Chatelain P
    PLoS One; 2023; 18(5):e0284714. PubMed ID: 37141190
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Wake development behind paired wings with tip and root trailing vortices: consequences for animal flight force estimates.
    Horstmann JT; Henningsson P; Thomas AL; Bomphrey RJ
    PLoS One; 2014; 9(3):e91040. PubMed ID: 24632825
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Flow turning effect and laminar control by the 3D curvature of leading edge serrations from owl wing.
    Muthuramalingam M; Talboys E; Wagner H; Bruecker C
    Bioinspir Biomim; 2020 Dec; 16(2):. PubMed ID: 33137801
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Kinematics and aerodynamics of avian upstrokes during slow flight.
    Crandell KE; Tobalske BW
    J Exp Biol; 2015 Aug; 218(Pt 16):2518-27. PubMed ID: 26089528
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Flow pattern similarities in the near wake of three bird species suggest a common role for unsteady aerodynamic effects in lift generation.
    Gurka R; Krishnan K; Ben-Gida H; Kirchhefer AJ; Kopp GA; Guglielmo CG
    Interface Focus; 2017 Feb; 7(1):20160090. PubMed ID: 28163881
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High aerodynamic lift from the tail reduces drag in gliding raptors.
    Usherwood JR; Cheney JA; Song J; Windsor SP; Stevenson JPJ; Dierksheide U; Nila A; Bomphrey RJ
    J Exp Biol; 2020 Feb; 223(Pt 3):. PubMed ID: 32041775
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Flight in Ground Effect Dramatically Reduces Aerodynamic Costs in Bats.
    Johansson LC; Jakobsen L; Hedenström A
    Curr Biol; 2018 Nov; 28(21):3502-3507.e4. PubMed ID: 30344122
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multi-cored vortices support function of slotted wing tips of birds in gliding and flapping flight.
    KleinHeerenbrink M; Johansson LC; Hedenström A
    J R Soc Interface; 2017 May; 14(130):. PubMed ID: 28539482
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The vortex wake of blackcaps (Sylvia atricapilla L.) measured using high-speed digital particle image velocimetry (DPIV).
    Johansson LC; Hedenström A
    J Exp Biol; 2009 Oct; 212(Pt 20):3365-76. PubMed ID: 19801441
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Close encounters among flying locusts produce wing-beat coupling.
    Kutsch W; Camhi J; Sumbre G
    J Comp Physiol A; 1994; 174(5):643-9. PubMed ID: 18186157
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Virtual manipulation of tail postures of a gliding barn owl (
    Song J; Cheney JA; Bomphrey RJ; Usherwood JR
    J R Soc Interface; 2022 Feb; 19(187):20210710. PubMed ID: 35135296
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Extraocular muscle architecture in hawks and owls.
    Plochocki JH; Segev T; Grow W; Hall MI
    Vet Ophthalmol; 2018 Nov; 21(6):595-600. PubMed ID: 29411483
    [TBL] [Abstract][Full Text] [Related]  

  • 53. How fast can raptors see?
    Potier S; Lieuvin M; Pfaff M; Kelber A
    J Exp Biol; 2020 Jan; 223(Pt 1):. PubMed ID: 31822552
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hawkmoth flight stability in turbulent vortex streets.
    Ortega-Jimenez VM; Greeter JS; Mittal R; Hedrick TL
    J Exp Biol; 2013 Dec; 216(Pt 24):4567-79. PubMed ID: 24072794
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Morphological Variations of Leading-Edge Serrations in Owls (Strigiformes).
    Weger M; Wagner H
    PLoS One; 2016; 11(3):e0149236. PubMed ID: 26934104
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Blood Lead Concentrations of Free-Ranging North Florida Raptors: 2008-17.
    Palmer AG; Heard D; Alexander A; Wellehan JFX; Hernandez J
    J Wildl Dis; 2022 Apr; 58(2):409-414. PubMed ID: 35255124
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Aerodynamics of gliding flight in common swifts.
    Henningsson P; Hedenström A
    J Exp Biol; 2011 Feb; 214(Pt 3):382-93. PubMed ID: 21228197
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Aerodynamics and Power Requirements of Forward Flapping Flight in the Mango Stem Borer Beetle (
    Urca T; Debnath AK; Stefanini J; Gurka R; Ribak G
    Integr Org Biol; 2020; 2(1):obaa026. PubMed ID: 33796817
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Upwash exploitation and downwash avoidance by flap phasing in ibis formation flight.
    Portugal SJ; Hubel TY; Fritz J; Heese S; Trobe D; Voelkl B; Hailes S; Wilson AM; Usherwood JR
    Nature; 2014 Jan; 505(7483):399-402. PubMed ID: 24429637
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Distribution of the characteristics of barbs and barbules on barn owl wing feathers.
    Weger M; Wagner H
    J Anat; 2017 May; 230(5):734-742. PubMed ID: 28255996
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.