These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
376 related articles for article (PubMed ID: 32697885)
1. Manipulating the Click Reactivity of Dibenzoazacyclooctynes: From Azide Click Component to Caged Acylation Reagent by Silver Catalysis. Shi W; Tang F; Ao J; Yu Q; Liu J; Tang Y; Jiang B; Ren X; Huang H; Yang W; Huang W Angew Chem Int Ed Engl; 2020 Nov; 59(45):19940-19944. PubMed ID: 32697885 [TBL] [Abstract][Full Text] [Related]
2. From mechanism to mouse: a tale of two bioorthogonal reactions. Sletten EM; Bertozzi CR Acc Chem Res; 2011 Sep; 44(9):666-76. PubMed ID: 21838330 [TBL] [Abstract][Full Text] [Related]
3. Optimizing the selectivity of DIFO-based reagents for intracellular bioorthogonal applications. Kim EJ; Kang DW; Leucke HF; Bond MR; Ghosh S; Love DC; Ahn JS; Kang DO; Hanover JA Carbohydr Res; 2013 Aug; 377():18-27. PubMed ID: 23770695 [TBL] [Abstract][Full Text] [Related]
5. Azidopropylvinylsulfonamide as a New Bifunctional Click Reagent for Bioorthogonal Conjugations: Application for DNA-Protein Cross-Linking. Dadová J; Vrábel M; Adámik M; Brázdová M; Pohl R; Fojta M; Hocek M Chemistry; 2015 Nov; 21(45):16091-102. PubMed ID: 26377361 [TBL] [Abstract][Full Text] [Related]
6. Facile Quenching and Spatial Patterning of Cylooctynes via Strain-Promoted Alkyne-Azide Cycloaddition of Inorganic Azides. Bjerknes M; Cheng H; McNitt CD; Popik VV Bioconjug Chem; 2017 May; 28(5):1560-1565. PubMed ID: 28437092 [TBL] [Abstract][Full Text] [Related]
7. Comparative analysis of Cu (I)-catalyzed alkyne-azide cycloaddition (CuAAC) and strain-promoted alkyne-azide cycloaddition (SPAAC) in O-GlcNAc proteomics. Li S; Zhu H; Wang J; Wang X; Li X; Ma C; Wen L; Yu B; Wang Y; Li J; Wang PG Electrophoresis; 2016 Jun; 37(11):1431-6. PubMed ID: 26853435 [TBL] [Abstract][Full Text] [Related]
8. Click Chemistry for Liposome Surface Modification. Spanedda MV; De Giorgi M; Heurtault B; Kichler A; Bourel-Bonnet L; Frisch B Methods Mol Biol; 2023; 2622():173-189. PubMed ID: 36781760 [TBL] [Abstract][Full Text] [Related]
9. Antibody functionalization with a dual reactive hydrazide/click crosslinker. Le HT; Jang JG; Park JY; Lim CW; Kim TW Anal Biochem; 2013 Apr; 435(1):68-73. PubMed ID: 23313755 [TBL] [Abstract][Full Text] [Related]
10. Well-defined diimine copper(I) complexes as catalysts in click azide-alkyne cycloaddition reactions. Barta JM; Díez-González S Molecules; 2013 Jul; 18(8):8919-28. PubMed ID: 23896617 [TBL] [Abstract][Full Text] [Related]
11. Click catalysis and DNA conjugation using a nanoscale DNA/silver cluster pair. Setzler CJ; Petty JT Nanoscale; 2024 Oct; 16(38):17868-17876. PubMed ID: 39257181 [TBL] [Abstract][Full Text] [Related]
12. Structural Determinants of Alkyne Reactivity in Copper-Catalyzed Azide-Alkyne Cycloadditions. Zhang X; Liu P; Zhu L Molecules; 2016 Dec; 21(12):. PubMed ID: 27941684 [TBL] [Abstract][Full Text] [Related]
13. Recent Advances in Recoverable Systems for the Copper-Catalyzed Azide-Alkyne Cycloaddition Reaction (CuAAC). Mandoli A Molecules; 2016 Sep; 21(9):. PubMed ID: 27607998 [TBL] [Abstract][Full Text] [Related]
14. The first well-defined silver(I)-complex-catalyzed cycloaddition of azides onto terminal alkynes at room temperature. McNulty J; Keskar K; Vemula R Chemistry; 2011 Dec; 17(52):14727-30. PubMed ID: 22125272 [No Abstract] [Full Text] [Related]
15. Copper-chelating azides for efficient click conjugation reactions in complex media. Bevilacqua V; King M; Chaumontet M; Nothisen M; Gabillet S; Buisson D; Puente C; Wagner A; Taran F Angew Chem Int Ed Engl; 2014 Jun; 53(23):5872-6. PubMed ID: 24788475 [TBL] [Abstract][Full Text] [Related]
16. Reliable and efficient procedures for the conjugation of biomolecules through Huisgen azide-alkyne cycloadditions. Lallana E; Riguera R; Fernandez-Megia E Angew Chem Int Ed Engl; 2011 Sep; 50(38):8794-804. PubMed ID: 21905176 [TBL] [Abstract][Full Text] [Related]
17. Highly Efficient Peptide-Based Click Chemistry for Proteomic Profiling of Nascent Proteins. Sun N; Wang Y; Wang J; Sun W; Yang J; Liu N Anal Chem; 2020 Jun; 92(12):8292-8297. PubMed ID: 32434323 [TBL] [Abstract][Full Text] [Related]
18. Biocompatible Azide-Alkyne "Click" Reactions for Surface Decoration of Glyco-Engineered Cells. Gutmann M; Memmel E; Braun AC; Seibel J; Meinel L; Lühmann T Chembiochem; 2016 May; 17(9):866-75. PubMed ID: 26818821 [TBL] [Abstract][Full Text] [Related]
19. Copper-Catalyzed Alkyne-Azide Cycloaddition on the Solid Phase for the Preparation of Fully Click-Modified Nucleic Acids. Rosenthal M; Pfeiffer F; Mayer G Methods Mol Biol; 2019; 1973():177-183. PubMed ID: 31016702 [TBL] [Abstract][Full Text] [Related]
20. Application of click chemistry to the production of DNA microarrays. Uszczyńska B; Ratajczak T; Frydrych E; Maciejewski H; Figlerowicz M; Markiewicz WT; Chmielewski MK Lab Chip; 2012 Mar; 12(6):1151-6. PubMed ID: 22318451 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]