These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 32698046)

  • 21. Ochrobactrum anthropi used to control ammonium for nitrate removal by starch-stabilized nanoscale zero valent iron.
    Zhou J; Sun Q; Chen D; Wang H; Yang K
    Water Sci Technol; 2017 Oct; 76(7-8):1827-1832. PubMed ID: 28991797
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of common ions on nitrate removal by zero-valent iron from alkaline soil.
    Tang C; Zhang Z; Sun X
    J Hazard Mater; 2012 Sep; 231-232():114-9. PubMed ID: 22795587
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effects of flow rate and concentration on nitrobenzene removal in abiotic and biotic zero-valent iron columns.
    Yin W; Wu J; Huang W; Li Y; Jiang G
    Sci Total Environ; 2016 Aug; 560-561():12-8. PubMed ID: 27093118
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of clay minerals in the reduction of nitrate in groundwater by zero-valent iron.
    Cho DW; Chon CM; Jeon BH; Kim Y; Khan MA; Song H
    Chemosphere; 2010 Oct; 81(5):611-6. PubMed ID: 20797759
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microbial reduction of nitrate in the presence of zero-valent iron.
    Zhang Y; Douglas GB; Kaksonen AH; Cui L; Ye Z
    Sci Total Environ; 2019 Jan; 646():1195-1203. PubMed ID: 30235605
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nitrate and ammonium ions removal from groundwater by a hybrid system of zero-valent iron combined with adsorbents.
    Ji MK; Park WB; Khan MA; Abou-Shanab RA; Kim Y; Cho Y; Choi J; Song H; Jeon BH
    J Environ Monit; 2012 Apr; 14(4):1153-8. PubMed ID: 22344042
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microbial reduction of nitrate in the presence of nanoscale zero-valent iron.
    Shin KH; Cha DK
    Chemosphere; 2008 May; 72(2):257-62. PubMed ID: 18331753
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electron competition and electron selectivity in abiotic, biotic, and coupled systems for dechlorinating chlorinated aliphatic hydrocarbons in groundwater: A review.
    Wang X; Xin J; Yuan M; Zhao F
    Water Res; 2020 Sep; 183():116060. PubMed ID: 32750534
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-level arsenite removal from groundwater by zero-valent iron.
    Lien HL; Wilkin RT
    Chemosphere; 2005 Apr; 59(3):377-86. PubMed ID: 15763090
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of zero-valent iron and iron oxide nanoparticle stabilized alkyl polyglucoside phosphate foams for remediation of diesel-contaminated soils.
    Karthick A; Roy B; Chattopadhyay P
    J Environ Manage; 2019 Jun; 240():93-107. PubMed ID: 30928799
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of magnetite nanoparticles in the reduction of nitrate in groundwater by zero-valent iron.
    Cho DW; Song H; Schwartz FW; Kim B; Jeon BH
    Chemosphere; 2015 Apr; 125():41-9. PubMed ID: 25665757
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigation of the removal mechanism of Cr(VI) in groundwater using activated carbon and cast iron combined system.
    Huang D; Wang G; Li Z; Kang F; Liu F
    Environ Sci Pollut Res Int; 2017 Aug; 24(22):18341-18354. PubMed ID: 28639020
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Non-pumping reactive wells filled with mixing nano and micro zero-valent iron for nitrate removal from groundwater: Vertical, horizontal, and slanted wells.
    Hosseini SM; Tosco T; Ataie-Ashtiani B; Simmons CT
    J Contam Hydrol; 2018 Mar; 210():50-64. PubMed ID: 29519731
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Potential electron donor for nanoiron supported hydrogenotrophic denitrification: H
    Xu C; Wang X; An Y; Yue J; Zhang R
    Chemosphere; 2018 Jul; 202():644-650. PubMed ID: 29597182
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced removal of Se(VI) from water via pre-corrosion of zero-valent iron using H
    Shan C; Chen J; Yang Z; Jia H; Guan X; Zhang W; Pan B
    Water Res; 2018 Apr; 133():173-181. PubMed ID: 29407699
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A zero-valent iron and zeolite filter for nitrate recycling from agricultural drainage water.
    Florea AF; Lu C; Hansen HCB
    Chemosphere; 2022 Jan; 287(Pt 1):131993. PubMed ID: 34523440
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nitrate removal in zero-valent iron packed columns.
    Westerhoff P; James J
    Water Res; 2003 Apr; 37(8):1818-30. PubMed ID: 12697226
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Coupling interaction between porous biochar and nano zero valent iron/nano α-hydroxyl iron oxide improves the remediation efficiency of cadmium in aqueous solution.
    Zhu L; Tong L; Zhao N; Li J; Lv Y
    Chemosphere; 2019 Mar; 219():493-503. PubMed ID: 30551116
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Zero valent iron supported biological denitrification for farmland drainage treatments with low organic carbon: Performance and potential mechanisms.
    Wang C; Xu Y; Hou J; Wang P; Zhang F; Zhou Q; You G
    Sci Total Environ; 2019 Nov; 689():1044-1053. PubMed ID: 31466145
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monothioarsenate Occurrence in Bangladesh Groundwater and Its Removal by Ferrous and Zero-Valent Iron Technologies.
    Planer-Friedrich B; Schaller J; Wismeth F; Mehlhorn J; Hug SJ
    Environ Sci Technol; 2018 May; 52(10):5931-5939. PubMed ID: 29671316
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.