BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 32698084)

  • 1. Controllable fabrication of NiV
    Li Y; Sun H; Yang Y; Cao Y; Zhou W; Chai H
    J Colloid Interface Sci; 2020 Nov; 580():298-307. PubMed ID: 32698084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Snowflake-Like Dendritic CoNi Alloy-rGO Nanocomposite as a Cathode Electrode Material for an All-Solid-State Flexible Asymmetric High-Performance Supercapacitor Device.
    Makkar P; Ghosh NN
    ACS Omega; 2020 May; 5(18):10572-10580. PubMed ID: 32426615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymmetric carbon nanotube-MnO₂ two-ply yarn supercapacitors for wearable electronics.
    Su F; Miao M
    Nanotechnology; 2014 Apr; 25(13):135401. PubMed ID: 24583526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inkjet-Printed Electrodes on A4 Paper Substrates for Low-Cost, Disposable, and Flexible Asymmetric Supercapacitors.
    Sundriyal P; Bhattacharya S
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38507-38521. PubMed ID: 28991438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nickel molybdate nanorods supported on three-dimensional, porous nickel film coated on copper wire as an advanced binder-free electrode for flexible wire-type asymmetric micro-supercapacitors with enhanced electrochemical performances.
    Naderi L; Shahrokhian S
    J Colloid Interface Sci; 2019 Apr; 542():325-338. PubMed ID: 30763900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance analysis of three distinct Ni
    Seerangan Selvam G; Sthevan Kovil Pitchai J; Ammasai K; Dheivasigamani T
    Dalton Trans; 2023 Oct; 52(40):14491-14509. PubMed ID: 37779499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High performance of a solid-state flexible asymmetric supercapacitor based on graphene films.
    Choi BG; Chang SJ; Kang HW; Park CP; Kim HJ; Hong WH; Lee S; Huh YS
    Nanoscale; 2012 Aug; 4(16):4983-8. PubMed ID: 22751863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational Design of Porous Structured Nickel Manganese Sulfides Hexagonal Sheets-in-Cage Structures as an Advanced Electrode Material for High-Performance Electrochemical Capacitors.
    Khalafallah D; Wu Z; Zhi M; Hong Z
    Chemistry; 2020 Feb; 26(10):2251-2262. PubMed ID: 31769082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Template-Free Preparation of α-Ni(OH)
    Zhang R; Tu Q; Li X; Sun X; Liu X; Chen L
    Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35808052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors.
    Jin Y; Chen H; Chen M; Liu N; Li Q
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3408-16. PubMed ID: 23488813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of iron oxide-CNT based flexible asymmetric solid state supercapacitor device with high cyclic stability.
    Avasthi P; Arya N; Singh M; Balakrishnan V
    Nanotechnology; 2020 Oct; 31(43):435402. PubMed ID: 32619994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible polyester cellulose paper supercapacitor with a gel electrolyte.
    Karthika P; Rajalakshmi N; Dhathathreyan KS
    Chemphyschem; 2013 Nov; 14(16):3822-6. PubMed ID: 24155269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porous α-Fe₂O₃@C Nanowire Arrays as Flexible Supercapacitors Electrode Materials with Excellent Electrochemical Performances.
    Dong Y; Xing L; Chen K; Wu X
    Nanomaterials (Basel); 2018 Jul; 8(7):. PubMed ID: 29966399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solid-State Thin-Film Supercapacitors with Ultrafast Charge/Discharge Based on N-Doped-Carbon-Tubes/Au-Nanoparticles-Doped-MnO2 Nanocomposites.
    Lv Q; Wang S; Sun H; Luo J; Xiao J; Xiao J; Xiao F; Wang S
    Nano Lett; 2016 Jan; 16(1):40-7. PubMed ID: 26599168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aloe vera Derived Activated High-Surface-Area Carbon for Flexible and High-Energy Supercapacitors.
    Karnan M; Subramani K; Sudhan N; Ilayaraja N; Sathish M
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35191-35202. PubMed ID: 27977134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Performance Flexible Solid-State Asymmetric Supercapacitors Based on Bimetallic Transition Metal Phosphide Nanocrystals.
    Zhang N; Li Y; Xu J; Li J; Wei B; Ding Y; Amorim I; Thomas R; Thalluri SM; Liu Y; Yu G; Liu L
    ACS Nano; 2019 Sep; 13(9):10612-10621. PubMed ID: 31461617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 3D self-supported coralline-like CuCo
    Ma L; Chen T; Li S; Gui P; Fang G
    Nanotechnology; 2019 Jun; 30(25):255603. PubMed ID: 30790773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Well-Ordered Oxygen-Deficient CoMoO
    Chi K; Zhang Z; Lv Q; Xie C; Xiao J; Xiao F; Wang S
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):6044-6053. PubMed ID: 28102070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchical 3D All-Carbon Composite Structure Modified with N-Doped Graphene Quantum Dots for High-Performance Flexible Supercapacitors.
    Li Z; Liu X; Wang L; Bu F; Wei J; Pan D; Wu M
    Small; 2018 Sep; 14(39):e1801498. PubMed ID: 30151984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible superior electrode architectures based on three-dimensional porous spinous α-Fe2O3 with a high performance as a supercapacitor.
    Nan H; Yu L; Ma W; Geng B; Zhang X
    Dalton Trans; 2015 May; 44(20):9581-7. PubMed ID: 25921621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.