BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 32698170)

  • 1. Predicting voxel-level dose distributions for esophageal radiotherapy using densely connected network with dilated convolutions.
    Zhang J; Liu S; Yan H; Li T; Mao R; Liu J
    Phys Med Biol; 2020 Oct; 65(20):205013. PubMed ID: 32698170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A deep learning method for prediction of three-dimensional dose distribution of helical tomotherapy.
    Liu Z; Fan J; Li M; Yan H; Hu Z; Huang P; Tian Y; Miao J; Dai J
    Med Phys; 2019 May; 46(5):1972-1983. PubMed ID: 30870586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning architecture with transformer and semantic field alignment for voxel-level dose prediction on brain tumors.
    Yang J; Zhao Y; Zhang F; Liao M; Yang X
    Med Phys; 2023 Feb; 50(2):1149-1161. PubMed ID: 36434793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic multiorgan segmentation in thorax CT images using U-net-GAN.
    Dong X; Lei Y; Wang T; Thomas M; Tang L; Curran WJ; Liu T; Yang X
    Med Phys; 2019 May; 46(5):2157-2168. PubMed ID: 30810231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of Monte Carlo algorithm for compliance with RTOG 0915 dosimetric criteria in peripheral lung cancer patients treated with stereotactic body radiotherapy.
    Pokhrel D; Sood S; Badkul R; Jiang H; McClinton C; Lominska C; Kumar P; Wang F
    J Appl Clin Med Phys; 2016 May; 17(3):277-293. PubMed ID: 27167284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A modified U-net with graph representation for dose prediction in esophageal cancer radiotherapy plans.
    Chen Y; Yang W; Lu J; Sun J; Rao L; Zhao H; Peng X; Ni D
    Comput Med Imaging Graph; 2024 Jan; 111():102318. PubMed ID: 38088017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of CT images with average intensity projection, free breathing, and mid-ventilation for dose calculation in lung cancer.
    Khamfongkhruea C; Thongsawad S; Tannanonta C; Chamchod S
    J Appl Clin Med Phys; 2017 Mar; 18(2):26-36. PubMed ID: 28300381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks.
    Men K; Dai J; Li Y
    Med Phys; 2017 Dec; 44(12):6377-6389. PubMed ID: 28963779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive volumetric modulated arc treatment planning for esophageal cancers using cone beam computed tomography.
    Sriram P; Syamkumar SA; Kumar JS; Prabakar S; Dhanabalan R; Vivekanandan N
    Phys Med; 2012 Oct; 28(4):327-32. PubMed ID: 22079402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical Target Volume Auto-Segmentation of Esophageal Cancer for Radiotherapy After Radical Surgery Based on Deep Learning.
    Cao R; Pei X; Ge N; Zheng C
    Technol Cancer Res Treat; 2021; 20():15330338211034284. PubMed ID: 34387104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative analysis of the factors which affect the interpatient organ-at-risk dose sparing variation in IMRT plans.
    Yuan L; Ge Y; Lee WR; Yin FF; Kirkpatrick JP; Wu QJ
    Med Phys; 2012 Nov; 39(11):6868-78. PubMed ID: 23127079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of heart and coronary artery doses associated with intensity-modulated radiotherapy versus three-dimensional conformal radiotherapy for distal esophageal cancer.
    Kole TP; Aghayere O; Kwah J; Yorke ED; Goodman KA
    Int J Radiat Oncol Biol Phys; 2012 Aug; 83(5):1580-6. PubMed ID: 22284687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of treatment planning using a structure block function on the target and organ doses related to patient movement in cervical esophageal cancer: A phantom study.
    Shimizu H; Sasaki K; Ito M; Aoyama T; Tachibana H; Tomita N; Makita C; Tanaka H; Koide Y; Iwata T; Kodaira T
    J Appl Clin Med Phys; 2019 May; 20(5):75-83. PubMed ID: 30997729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporating dosimetric features into the prediction of 3D VMAT dose distributions using deep convolutional neural network.
    Ma M; Kovalchuk N; Buyyounouski MK; Xing L; Yang Y
    Phys Med Biol; 2019 Jun; 64(12):125017. PubMed ID: 31082805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilizing pre-determined beam orientation information in dose prediction by 3D fully-connected network for intensity modulated radiotherapy.
    Yan H; Liu S; Zhang J; Liu J; Li T
    Quant Imaging Med Surg; 2021 Dec; 11(12):4742-4752. PubMed ID: 34888186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A preliminary study of using a deep convolution neural network to generate synthesized CT images based on CBCT for adaptive radiotherapy of nasopharyngeal carcinoma.
    Li Y; Zhu J; Liu Z; Teng J; Xie Q; Zhang L; Liu X; Shi J; Chen L
    Phys Med Biol; 2019 Jul; 64(14):145010. PubMed ID: 31170699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images.
    Tong N; Gou S; Yang S; Cao M; Sheng K
    Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Convolution Neural Network (DCNN) Multiplane Approach to Synthetic CT Generation From MR images-Application in Brain Proton Therapy.
    Spadea MF; Pileggi G; Zaffino P; Salome P; Catana C; Izquierdo-Garcia D; Amato F; Seco J
    Int J Radiat Oncol Biol Phys; 2019 Nov; 105(3):495-503. PubMed ID: 31271823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the dose on specific 3DCT images and the accumulated dose for cardiac structures in esophageal tumors radiotherapy: whether specific 3DCT images can be used for dose assessment?
    Tong Y; Gong G; Su M; Yin Y
    Radiat Oncol; 2019 Dec; 14(1):242. PubMed ID: 31881901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multisegmented tangential breast fields: a rational way to treat breast cancer.
    Gulybán A; Kovács P; Sebestyén Z; Farkas R; Csere T; Karácsonyi G; Dérczy K; Hideghéty K; Esik O
    Strahlenther Onkol; 2008 May; 184(5):262-9. PubMed ID: 18427757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.