BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 32698196)

  • 1. Benchmarking variant callers in next-generation and third-generation sequencing analysis.
    Pei S; Liu T; Ren X; Li W; Chen C; Xie Z
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32698196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variant callers for next-generation sequencing data: a comparison study.
    Liu X; Han S; Wang Z; Gelernter J; Yang BZ
    PLoS One; 2013; 8(9):e75619. PubMed ID: 24086590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SNVSniffer: an integrated caller for germline and somatic single-nucleotide and indel mutations.
    Liu Y; Loewer M; Aluru S; Schmidt B
    BMC Syst Biol; 2016 Aug; 10 Suppl 2(Suppl 2):47. PubMed ID: 27489955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic benchmark of state-of-the-art variant calling pipelines identifies major factors affecting accuracy of coding sequence variant discovery.
    Barbitoff YA; Abasov R; Tvorogova VE; Glotov AS; Predeus AV
    BMC Genomics; 2022 Feb; 23(1):155. PubMed ID: 35193511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of GATK and DeepVariant by trio sequencing.
    Lin YL; Chang PC; Hsu C; Hung MZ; Chien YH; Hwu WL; Lai F; Lee NC
    Sci Rep; 2022 Feb; 12(1):1809. PubMed ID: 35110657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. INDELseek: detection of complex insertions and deletions from next-generation sequencing data.
    Au CH; Leung AY; Kwong A; Chan TL; Ma ES
    BMC Genomics; 2017 Jan; 18(1):16. PubMed ID: 28056804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic comparison of germline variant calling pipelines cross multiple next-generation sequencers.
    Chen J; Li X; Zhong H; Meng Y; Du H
    Sci Rep; 2019 Jun; 9(1):9345. PubMed ID: 31249349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ICR142 Benchmarker: evaluating, optimising and benchmarking variant calling performance using the ICR142 NGS validation series.
    Ruark E; Holt E; Renwick A; Münz M; Wakeling M; Ellard S; Mahamdallie S; Yost S; Rahman N
    Wellcome Open Res; 2018; 3():108. PubMed ID: 30483600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of three variant callers for human whole genome sequencing.
    Supernat A; Vidarsson OV; Steen VM; Stokowy T
    Sci Rep; 2018 Dec; 8(1):17851. PubMed ID: 30552369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An analytical workflow for accurate variant discovery in highly divergent regions.
    Tian S; Yan H; Neuhauser C; Slager SL
    BMC Genomics; 2016 Sep; 17(1):703. PubMed ID: 27590916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy and efficiency of germline variant calling pipelines for human genome data.
    Zhao S; Agafonov O; Azab A; Stokowy T; Hovig E
    Sci Rep; 2020 Nov; 10(1):20222. PubMed ID: 33214604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sentieon DNASeq Variant Calling Workflow Demonstrates Strong Computational Performance and Accuracy.
    Kendig KI; Baheti S; Bockol MA; Drucker TM; Hart SN; Heldenbrand JR; Hernaez M; Hudson ME; Kalmbach MT; Klee EW; Mattson NR; Ross CA; Taschuk M; Wieben ED; Wiepert M; Wildman DE; Mainzer LS
    Front Genet; 2019; 10():736. PubMed ID: 31481971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Somatic and Germline Variant Calling from Next-Generation Sequencing Data.
    Chang TC; Xu K; Cheng Z; Wu G
    Adv Exp Med Biol; 2022; 1361():37-54. PubMed ID: 35230682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of post-alignment processing in variant discovery from whole exome data.
    Tian S; Yan H; Kalmbach M; Slager SL
    BMC Bioinformatics; 2016 Oct; 17(1):403. PubMed ID: 27716037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FVC as an adaptive and accurate method for filtering variants from popular NGS analysis pipelines.
    Ren Y; Kong Y; Zhou X; Genchev GZ; Zhou C; Zhao H; Lu H
    Commun Biol; 2022 Sep; 5(1):975. PubMed ID: 36114280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of seven SNP calling pipelines for the next-generation sequencing data of chickens.
    Liu J; Shen Q; Bao H
    PLoS One; 2022; 17(1):e0262574. PubMed ID: 35100292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study on fast calling variants from next-generation sequencing data using decision tree.
    Li Z; Wang Y; Wang F
    BMC Bioinformatics; 2018 Apr; 19(1):145. PubMed ID: 29673316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic comparison of variant calling pipelines using gold standard personal exome variants.
    Hwang S; Kim E; Lee I; Marcotte EM
    Sci Rep; 2015 Dec; 5():17875. PubMed ID: 26639839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating the Calling Performance of a Rare Disease NGS Panel for Single Nucleotide and Copy Number Variants.
    Cacheiro P; Ordóñez-Ugalde A; Quintáns B; Piñeiro-Hermida S; Amigo J; García-Murias M; Pascual-Pascual SI; Grandas F; Arpa J; Carracedo A; Sobrido MJ
    Mol Diagn Ther; 2017 Jun; 21(3):303-313. PubMed ID: 28290094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hybrid computational strategy to address WGS variant analysis in >5000 samples.
    Huang Z; Rustagi N; Veeraraghavan N; Carroll A; Gibbs R; Boerwinkle E; Venkata MG; Yu F
    BMC Bioinformatics; 2016 Sep; 17(1):361. PubMed ID: 27612449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.