BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 32698379)

  • 1. Coupling Ion Specificity of the Flagellar Stator Proteins MotA1/MotB1 of
    Onoe S; Yoshida M; Terahara N; Sowa Y
    Biomolecules; 2020 Jul; 10(7):. PubMed ID: 32698379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel type bacterial flagellar motor that can use divalent cations as a coupling ion.
    Imazawa R; Takahashi Y; Aoki W; Sano M; Ito M
    Sci Rep; 2016 Jan; 6():19773. PubMed ID: 26794857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion Selectivity of the Flagellar Motors Derived from the Alkaliphilic Bacillus and Paenibacillus Species.
    Takahashi Y; Ito M
    Methods Mol Biol; 2017; 1593():297-303. PubMed ID: 28389964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonconventional cation-coupled flagellar motors derived from the alkaliphilic Bacillus and Paenibacillus species.
    Ito M; Takahashi Y
    Extremophiles; 2017 Jan; 21(1):3-14. PubMed ID: 27771767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of the MotA(M206I) Mutation on Torque Generation and Stator Assembly in the
    Suzuki Y; Morimoto YV; Oono K; Hayashi F; Oosawa K; Kudo S; Nakamura S
    J Bacteriol; 2019 Mar; 201(6):. PubMed ID: 30642987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutational analysis of charged residues in the cytoplasmic loops of MotA and MotP in the Bacillus subtilis flagellar motor.
    Takahashi Y; Ito M
    J Biochem; 2014 Oct; 156(4):211-20. PubMed ID: 24771657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurements of the Ion Channel Activity of the Transmembrane Stator Complex in the Bacterial Flagellar Motor.
    Morimoto YV; Minamino T
    Methods Mol Biol; 2023; 2646():83-94. PubMed ID: 36842108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Torque-speed relationships of Na+-driven chimeric flagellar motors in Escherichia coli.
    Inoue Y; Lo CJ; Fukuoka H; Takahashi H; Sowa Y; Pilizota T; Wadhams GH; Homma M; Berry RM; Ishijima A
    J Mol Biol; 2008 Mar; 376(5):1251-9. PubMed ID: 18207160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Function of proline residues of MotA in torque generation by the flagellar motor of Escherichia coli.
    Braun TF; Poulson S; Gully JB; Empey JC; Van Way S; Putnam A; Blair DF
    J Bacteriol; 1999 Jun; 181(11):3542-51. PubMed ID: 10348868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Chaperone for the Stator Units of a Bacterial Flagellum.
    Ribardo DA; Kelley BR; Johnson JG; Hendrixson DR
    mBio; 2019 Aug; 10(4):. PubMed ID: 31387912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppressor mutants from MotB-D24E and MotS-D30E in the flagellar stator complex of Bacillus subtilis.
    Takahashi Y; Koyama K; Ito M
    J Gen Appl Microbiol; 2014; 60(4):131-9. PubMed ID: 25273986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sodium-dependent dynamic assembly of membrane complexes in sodium-driven flagellar motors.
    Fukuoka H; Wada T; Kojima S; Ishijima A; Homma M
    Mol Microbiol; 2009 Feb; 71(4):825-35. PubMed ID: 19183284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic exchange of two types of stator units in
    Terahara N; Namba K; Minamino T
    Comput Struct Biotechnol J; 2020; 18():2897-2907. PubMed ID: 33163150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of functional fragments of the cytoplasmic loop with the C-terminal region of PomA, a stator component of the Vibrio Na+ driven flagellar motor.
    Onoue Y; Abe-Yoshizumi R; Gohara M; Kobayashi S; Nishioka N; Kojima S; Homma M
    J Biochem; 2014 Mar; 155(3):207-16. PubMed ID: 24398784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct observation of steps in rotation of the bacterial flagellar motor.
    Sowa Y; Rowe AD; Leake MC; Yakushi T; Homma M; Ishijima A; Berry RM
    Nature; 2005 Oct; 437(7060):916-9. PubMed ID: 16208378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Amiloride Derivatives That Inhibit Bacterial Motility across Multiple Strains and Stator Types.
    Islam MI; Bae JH; Ishida T; Ridone P; Lin J; Kelso MJ; Sowa Y; Buckley BJ; Baker MAB
    J Bacteriol; 2021 Oct; 203(22):e0036721. PubMed ID: 34516280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis of torque generation in the bi-directional bacterial flagellar motor.
    Hu H; Santiveri M; Wadhwa N; Berg HC; Erhardt M; Taylor NMI
    Trends Biochem Sci; 2022 Feb; 47(2):160-172. PubMed ID: 34294545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Speed of the bacterial flagellar motor near zero load depends on the number of stator units.
    Nord AL; Sowa Y; Steel BC; Lo CJ; Berry RM
    Proc Natl Acad Sci U S A; 2017 Oct; 114(44):11603-11608. PubMed ID: 29078322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ion-coupling determinants of Na+-driven and H+-driven flagellar motors.
    Asai Y; Yakushi T; Kawagishi I; Homma M
    J Mol Biol; 2003 Mar; 327(2):453-63. PubMed ID: 12628250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MotP Subunit is Critical for Ion Selectivity and Evolution of a K
    Naganawa S; Ito M
    Biomolecules; 2020 Apr; 10(5):. PubMed ID: 32365619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.