These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 32698447)
1. Design and Simulation of an Integrated Centrifugal Microfluidic Device for CTCs Separation and Cell Lysis. Nasiri R; Shamloo A; Akbari J; Tebon P; R Dokmeci M; Ahadian S Micromachines (Basel); 2020 Jul; 11(7):. PubMed ID: 32698447 [TBL] [Abstract][Full Text] [Related]
2. An experimental study of centrifugal microfluidic platforms for magnetic-inertial separation of circulating tumor cells using contraction-expansion and zigzag arrays. Momeni M; Shamloo A; Hasani-Gangaraj M; Dezhkam R J Chromatogr A; 2023 Sep; 1706():464249. PubMed ID: 37531849 [TBL] [Abstract][Full Text] [Related]
3. Numerical Study of a Centrifugal Platform for the Inertial Separation of Circulating Tumor Cells Using Contraction-Expansion Array Microchannels. Ebrahimi S; Tahmasebipour M Arch Razi Inst; 2022 Apr; 77(2):647-660. PubMed ID: 36284940 [TBL] [Abstract][Full Text] [Related]
4. A Novel Size-Based Centrifugal Microfluidic Design to Enrich and Magnetically Isolate Circulating Tumor Cells from Blood Cells through Biocompatible Magnetite-Arginine Nanoparticles. Farahinia A; Khani M; Morhart TA; Wells G; Badea I; Wilson LD; Zhang W Sensors (Basel); 2024 Sep; 24(18):. PubMed ID: 39338775 [TBL] [Abstract][Full Text] [Related]
5. Efficient separation of tumor cells from untreated whole blood using a novel multistage hydrodynamic focusing microfluidics. Gao R; Cheng L; Wang S; Bi X; Wang X; Wang R; Chen X; Zha Z; Wang F; Xu X; Zhao G; Yu L Talanta; 2020 Jan; 207():120261. PubMed ID: 31594567 [TBL] [Abstract][Full Text] [Related]
6. A curved expansion-contraction microfluidic structure for inertial based separation of circulating tumor cells from blood samples. Ebrahimi S; Alishiri M; Pishbin E; Afjoul H; Shamloo A J Chromatogr A; 2023 Aug; 1705():464200. PubMed ID: 37429078 [TBL] [Abstract][Full Text] [Related]
7. Mixing Performance of a Planar Asymmetric Contraction-and-Expansion Micromixer. Natsuhara D; Saito R; Okamoto S; Nagai M; Shibata T Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36144009 [TBL] [Abstract][Full Text] [Related]
8. Numerical study of dielectrophoresis-modified inertial migration for overlapping sized cell separation. Khan M; Chen X Electrophoresis; 2022 Apr; 43(7-8):879-891. PubMed ID: 35015306 [TBL] [Abstract][Full Text] [Related]
9. Separation of CTCs from WBCs using DEP-assisted inertial manipulation: A numerical study. Uddin MR; Sarowar MT; Chen X Electrophoresis; 2023 Dec; 44(23):1781-1794. PubMed ID: 37753944 [TBL] [Abstract][Full Text] [Related]
10. Design of a Hybrid Inertial and Magnetophoretic Microfluidic Device for CTCs Separation from Blood. Nasiri R; Shamloo A; Akbari J Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442499 [TBL] [Abstract][Full Text] [Related]
11. Continuous CTC separation through a DEP-based contraction-expansion inertial microfluidic channel. Islam MS; Chen X Biotechnol Prog; 2023; 39(4):e3341. PubMed ID: 36970770 [TBL] [Abstract][Full Text] [Related]
12. A Hybrid Spiral Microfluidic Platform Coupled with Surface Acoustic Waves for Circulating Tumor Cell Sorting and Separation: A Numerical Study. Altay R; Yapici MK; Koşar A Biosensors (Basel); 2022 Mar; 12(3):. PubMed ID: 35323441 [TBL] [Abstract][Full Text] [Related]
13. A micropillar array-based microfluidic chip for label-free separation of circulating tumor cells: The best micropillar geometry? Rahmanian M; Sartipzadeh Hematabad O; Askari E; Shokati F; Bakhshi A; Moghadam S; Olfatbakhsh A; Al Sadat Hashemi E; Khorsand Ahmadi M; Morteza Naghib S; Sinha N; Tel J; Eslami Amirabadi H; den Toonder JMJ; Majidzadeh-A K J Adv Res; 2023 May; 47():105-121. PubMed ID: 35964874 [TBL] [Abstract][Full Text] [Related]
14. High-Throughput Isolation of Circulating Tumor Cells Using Cascaded Inertial Focusing Microfluidic Channel. Abdulla A; Liu W; Gholamipour-Shirazi A; Sun J; Ding X Anal Chem; 2018 Apr; 90(7):4397-4405. PubMed ID: 29537252 [TBL] [Abstract][Full Text] [Related]
15. Design of a novel integrated microfluidic chip for continuous separation of circulating tumor cells from peripheral blood cells. Bakhshi MS; Rizwan M; Khan GJ; Duan H; Zhai K Sci Rep; 2022 Oct; 12(1):17016. PubMed ID: 36220844 [TBL] [Abstract][Full Text] [Related]
16. Rapid and precise tumor cell separation using the combination of size-dependent inertial and size-independent magnetic methods. Huang D; Xiang N Lab Chip; 2021 Apr; 21(7):1409-1417. PubMed ID: 33605279 [TBL] [Abstract][Full Text] [Related]
17. Numerical Simulation of a Lab-on-Chip for Dielectrophoretic Separation of Circulating Tumor Cells. Alkhaiyat AM; Badran M Micromachines (Basel); 2023 Sep; 14(9):. PubMed ID: 37763932 [TBL] [Abstract][Full Text] [Related]
18. Numerical study of a double-stair-shaped dielectrophoresis channel for continuous on-chip cell separation and lysis using finite element method. Keumarsi MM; Oskouei PF; Dezhkam R; Shamloo A; Vatandoust F; Amiri HA J Chromatogr A; 2023 May; 1696():463960. PubMed ID: 37030128 [TBL] [Abstract][Full Text] [Related]
19. Affinity-Based Microfluidics Combined with Atomic Force Microscopy for Isolation and Nanomechanical Characterization of Circulating Tumor Cells. Deliorman M; Glia A; Qasaimeh MA Methods Mol Biol; 2023; 2679():41-66. PubMed ID: 37300608 [TBL] [Abstract][Full Text] [Related]
20. A novel microfluidic device integrating focus-separation speed reduction design and trap arrays for high-throughput capture of circulating tumor cells. Lu C; Xu J; Han J; Li X; Xue N; Li J; Wu W; Sun X; Wang Y; Ouyang Q; Yang G; Luo C Lab Chip; 2020 Nov; 20(22):4094-4105. PubMed ID: 33089845 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]