BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 32698449)

  • 1. Dielectrophoretic Separation of Particles Using Microfluidic Chip with Composite Three-Dimensional Electrode.
    Chen L; Liu X; Zheng X; Zhang X; Yang J; Tian T; Liao Y
    Micromachines (Basel); 2020 Jul; 11(7):. PubMed ID: 32698449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabricating a dielectrophoretic microfluidic device using 3D-printed moulds and silver conductive paint.
    Valijam S; Nilsson DPG; Malyshev D; Öberg R; Salehi A; Andersson M
    Sci Rep; 2023 Jun; 13(1):9560. PubMed ID: 37308526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array.
    Choi S; Park JK
    Lab Chip; 2005 Oct; 5(10):1161-7. PubMed ID: 16175274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3-D conducting PDMS composite electrodes.
    Lewpiriyawong N; Yang C; Lam YC
    Electrophoresis; 2010 Aug; 31(15):2622-31. PubMed ID: 20665920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AC-dielectrophoretic characterization and separation of submicron and micron particles using sidewall AgPDMS electrodes.
    Lewpiriyawong N; Yang C
    Biomicrofluidics; 2012 Mar; 6(1):12807-128079. PubMed ID: 22662074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A one-step molded microfluidic chip featuring a two-layer silver-PDMS microelectrode for dielectrophoretic cell separation.
    Zhang Z; Luo Y; Nie X; Yu D; Xing X
    Analyst; 2020 Aug; 145(16):5603-5614. PubMed ID: 32776070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dielectrophoretic microbead sorting using modular electrode design and capillary-driven microfluidics.
    Tirapu-Azpiroz J; Temiz Y; Delamarche E
    Biomed Microdevices; 2017 Oct; 19(4):95. PubMed ID: 29082438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic characterization and continuous separation of cells and particles using conducting poly(dimethyl siloxane) electrode induced alternating current-dielectrophoresis.
    Lewpiriyawong N; Kandaswamy K; Yang C; Ivanov V; Stocker R
    Anal Chem; 2011 Dec; 83(24):9579-85. PubMed ID: 22035423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous dielectrophoretic particle separation using a microfluidic device with 3D electrodes and vaulted obstacles.
    Jia Y; Ren Y; Jiang H
    Electrophoresis; 2015 Aug; 36(15):1744-53. PubMed ID: 25962351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An integrated acoustic and dielectrophoretic particle manipulation in a microfluidic device for particle wash and separation fabricated by mechanical machining.
    Çetin B; Özer MB; Çağatay E; Büyükkoçak S
    Biomicrofluidics; 2016 Jan; 10(1):014112. PubMed ID: 26865905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-Stage Particle Separation based on Microstructure Filtration and Dielectrophoresis.
    Yin D; Zhang X; Han X; Yang J; Hu N
    Micromachines (Basel); 2019 Jan; 10(2):. PubMed ID: 30708953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional focusing of particles using negative dielectrophoretic force in a microfluidic chip with insulating microstructures and dual planar microelectrodes.
    Jen CP; Weng CH; Huang CT
    Electrophoresis; 2011 Sep; 32(18):2428-35. PubMed ID: 21874653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous Particle Separation Driven by 3D Ag-PDMS Electrodes with Dielectric Electrophoretic Force Coupled with Inertia Force.
    Li X; Duan J; Qu Z; Wang J; Ji M; Zhang B
    Micromachines (Basel); 2022 Jan; 13(1):. PubMed ID: 35056282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New Generation Dielectrophoretic-Based Microfluidic Device for Multi-Type Cell Separation.
    Sharbati P; Sadaghiani AK; Koşar A
    Biosensors (Basel); 2023 Mar; 13(4):. PubMed ID: 37185493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous size-based DEP separation of particles using a bi-gap electrode pair.
    Derakhshan R; Ramiar A; Ghasemi A
    Analyst; 2022 Nov; 147(23):5395-5408. PubMed ID: 36286388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Separation of superparamagnetic particles through ratcheted Brownian motion and periodically switching magnetic fields.
    Liu F; Jiang L; Tan HM; Yadav A; Biswas P; van der Maarel JR; Nijhuis CA; van Kan JA
    Biomicrofluidics; 2016 Nov; 10(6):064105. PubMed ID: 27917252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous and continuous particle separation and counting
    Song Y; Han X; Li D; Liu Q; Li D
    RSC Adv; 2021 Jan; 11(7):3827-3833. PubMed ID: 35424334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and Fabrication of a Microfluidic Chip for Particle Size-Exclusion and Enrichment.
    Yang L; Ye T; Zhao X; Hu T; Wei Y
    Micromachines (Basel); 2021 Oct; 12(10):. PubMed ID: 34683269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dielectrophoretic separation of monocytes from cancer cells in a microfluidic chip using electrode pitch optimization.
    Zahedi Siani O; Zabetian Targhi M; Sojoodi M; Movahedin M
    Bioprocess Biosyst Eng; 2020 Sep; 43(9):1573-1586. PubMed ID: 32328730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiplexing microelectrodes for dielectrophoretic manipulation and electrical impedance measurement of single particles and cells in a microfluidic device.
    Geng Y; Zhu Z; Wang Y; Wang Y; Ouyang S; Zheng K; Ye W; Fan Y; Wang Z; Pan D
    Electrophoresis; 2019 May; 40(10):1436-1445. PubMed ID: 30706494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.