These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32698463)

  • 1. Oil Conductivity, Electric-Field-Induced Interfacial Charge Effects, and Their Influence on the Electro-Optical Response of Electrowetting Display Devices.
    Jiang C; Tang B; Xu B; Groenewold J; Zhou G
    Micromachines (Basel); 2020 Jul; 11(7):. PubMed ID: 32698463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Separated Reset Waveform Design for Suppressing Oil Backflow in Active Matrix Electrowetting Displays.
    Liu L; Bai P; Yi Z; Zhou G
    Micromachines (Basel); 2021 Apr; 12(5):. PubMed ID: 33925329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward Suppressing Oil Backflow Based on a Combined Driving Waveform for Electrowetting Displays.
    Long Z; Yi Z; Zhang H; Lv J; Liu L; Chi F; Shui L; Zhang C
    Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of surfactants to reduce the driving voltage of switchable optical elements based on electrowetting.
    Roques-Carmes T; Gigante A; Commenge JM; Corbel S
    Langmuir; 2009 Nov; 25(21):12771-9. PubMed ID: 19785398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of Multi-DC Overdriving Waveform of Electrowetting Displays for Gray Scale Consistency.
    Xu Y; Li S; Wang Z; Zhang H; Li Z; Xiao B; Guo W; Liu L; Bai P
    Micromachines (Basel); 2023 Mar; 14(3):. PubMed ID: 36985091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic Adaptive Display System for Electrowetting Displays Based on Alternating Current and Direct Current.
    Li S; Xu Y; Zhan Z; Du P; Liu L; Li Z; Wang H; Bai P
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Approximately symmetric electrowetting on an oil-lubricated surface.
    Yuan X; Tang B; Barman J; Groenewold J; Zhou G
    RSC Adv; 2020 May; 10(34):20257-20263. PubMed ID: 35520452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling of Oil/Water Interfacial Dynamics in Three-Dimensional Bistable Electrowetting Display Pixels.
    Yang G; Zhuang L; Bai P; Tang B; Henzen A; Zhou G
    ACS Omega; 2020 Mar; 5(10):5326-5333. PubMed ID: 32201821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward Suppressing Charge Trapping Based on a Combined Driving Waveform with an AC Reset Signal for Electro-Fluidic Displays.
    Long Z; Yi Z; Zhang H; Liu L; Shui L
    Membranes (Basel); 2022 Oct; 12(11):. PubMed ID: 36363627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aperture Ratio Improvement by Optimizing the Voltage Slope and Reverse Pulse in the Driving Waveform for Electrowetting Displays.
    Yi Z; Feng W; Wang L; Liu L; Lin Y; He W; Shui L; Zhang C; Zhang Z; Zhou G
    Micromachines (Basel); 2019 Dec; 10(12):. PubMed ID: 31817892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymmetrical Electrowetting on Dielectrics Induced by Charge Transfer through an Oil/Water Interface.
    Guo Y; Deng Y; Xu B; Henzen A; Hayes R; Tang B; Zhou G
    Langmuir; 2018 Oct; 34(40):11943-11951. PubMed ID: 30204450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-phase microfluidics in electrowetting displays and its effect on optical performance.
    He T; Jin M; Eijkel JC; Zhou G; Shui L
    Biomicrofluidics; 2016 Jan; 10(1):011908. PubMed ID: 26909120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scalable Fabrication and Testing Processes for Three-Layer Multi-Color Segmented Electrowetting Display.
    Yang G; Tang B; Yuan D; Henzen A; Zhou G
    Micromachines (Basel); 2019 May; 10(5):. PubMed ID: 31126076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photolithography Fabricated Spacer Arrays Offering Mechanical Strengthening and Oil Motion Control in Electrowetting Displays.
    Dou Y; Chen L; Li H; Tang B; Henzen A; Zhou G
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31952285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Environmental Factors and Metallic Electrodes on AC Electrical Conduction Through DNA Molecule.
    Abdalla S; Obaid A; Al-Marzouki FM
    Nanoscale Res Lett; 2017 Dec; 12(1):316. PubMed ID: 28454482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Multi-Electrode Pixel Structure for Quick-Response Electrowetting Displays.
    Tian L; Lai S; Zhang T; Li W; Tang B; Zhou G
    Micromachines (Basel); 2022 Jul; 13(7):. PubMed ID: 35888920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complementary electrowetting devices on plasma-treated fluoropolymer surfaces.
    Kim DY; Steckl AJ
    Langmuir; 2010 Jun; 26(12):9474-83. PubMed ID: 20329778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Driving System for Fast and Precise Gray-Scale Response Based on Amplitude-Frequency Mixed Modulation in TFT Electrowetting Displays.
    Yi Z; Liu L; Wang L; Li W; Shui L; Zhou G
    Micromachines (Basel); 2019 Oct; 10(11):. PubMed ID: 31671782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electric field-induced effects on neuronal cell biology accompanying dielectrophoretic trapping.
    Heida T
    Adv Anat Embryol Cell Biol; 2003; 173():III-IX, 1-77. PubMed ID: 12901336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First fabrication of electrowetting display by using pigment-in-oil driving pixels.
    Lee PT; Chiu CW; Lee TM; Chang TY; Wu MT; Cheng WY; Kuo SW; Lin JJ
    ACS Appl Mater Interfaces; 2013 Jul; 5(13):5914-20. PubMed ID: 23796039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.