These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Targeting virus-host interaction by novel pyrimidine derivative: an Rane JS; Pandey P; Chatterjee A; Khan R; Kumar A; Prakash A; Ray S J Biomol Struct Dyn; 2021 Sep; 39(15):5768-5778. PubMed ID: 32684109 [TBL] [Abstract][Full Text] [Related]
4. In silico study of azithromycin, chloroquine and hydroxychloroquine and their potential mechanisms of action against SARS-CoV-2 infection. Braz HLB; Silveira JAM; Marinho AD; de Moraes MEA; Moraes Filho MO; Monteiro HSA; Jorge RJB Int J Antimicrob Agents; 2020 Sep; 56(3):106119. PubMed ID: 32738306 [TBL] [Abstract][Full Text] [Related]
5. Different compounds against Angiotensin-Converting Enzyme 2 (ACE2) receptor potentially containing the infectivity of SARS-CoV-2: an in silico study. Shahbazi B; Mafakher L; Teimoori-Toolabi L J Mol Model; 2022 Mar; 28(4):82. PubMed ID: 35249180 [TBL] [Abstract][Full Text] [Related]
6. Truncated human angiotensin converting enzyme 2; a potential inhibitor of SARS-CoV-2 spike glycoprotein and potent COVID-19 therapeutic agent. Basit A; Ali T; Rehman SU J Biomol Struct Dyn; 2021 Jul; 39(10):3605-3614. PubMed ID: 32396773 [TBL] [Abstract][Full Text] [Related]
7. Pathway enrichment analysis of virus-host interactome and prioritization of novel compounds targeting the spike glycoprotein receptor binding domain-human angiotensin-converting enzyme 2 interface to combat SARS-CoV-2. Gollapalli P; B S S; Rimac H; Patil P; Nalilu SK; Kandagalla S; Shetty P J Biomol Struct Dyn; 2022 Apr; 40(6):2701-2714. PubMed ID: 33146070 [TBL] [Abstract][Full Text] [Related]
8. Repurposing of anticancer phytochemicals for identifying potential fusion inhibitor for SARS-CoV-2 using molecular docking and molecular dynamics (MD) simulations. Patel CN; Goswami D; Sivakumar PK; Pandya HA J Biomol Struct Dyn; 2022 Oct; 40(17):7744-7761. PubMed ID: 33749528 [TBL] [Abstract][Full Text] [Related]
9. Molecular docking study of potential phytochemicals and their effects on the complex of SARS-CoV2 spike protein and human ACE2. Basu A; Sarkar A; Maulik U Sci Rep; 2020 Oct; 10(1):17699. PubMed ID: 33077836 [TBL] [Abstract][Full Text] [Related]
10. The expression of hACE2 receptor protein and its involvement in SARS-CoV-2 entry, pathogenesis, and its application as potential therapeutic target. Al-Zaidan L; Mestiri S; Raza A; Merhi M; Inchakalody VP; Fernandes Q; Taib N; Uddin S; Dermime S Tumour Biol; 2021; 43(1):177-196. PubMed ID: 34420993 [TBL] [Abstract][Full Text] [Related]
11. In silico study of some selective phytochemicals against a hypothetical SARS-CoV-2 spike RBD using molecular docking tools. Nag A; Paul S; Banerjee R; Kundu R Comput Biol Med; 2021 Oct; 137():104818. PubMed ID: 34481181 [TBL] [Abstract][Full Text] [Related]
12. Epigallocatechin gallate and theaflavin gallate interaction in SARS-CoV-2 spike-protein central channel with reference to the hydroxychloroquine interaction: Bioinformatics and molecular docking study. Maiti S; Banerjee A Drug Dev Res; 2021 Feb; 82(1):86-96. PubMed ID: 32770567 [TBL] [Abstract][Full Text] [Related]
13. Coevolution, Dynamics and Allostery Conspire in Shaping Cooperative Binding and Signal Transmission of the SARS-CoV-2 Spike Protein with Human Angiotensin-Converting Enzyme 2. Verkhivker G Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33158276 [TBL] [Abstract][Full Text] [Related]
14. Plant derived active compounds as potential anti SARS-CoV-2 agents: an Kashyap D; Jakhmola S; Tiwari D; Kumar R; Moorthy NSHN; Elangovan M; BrĂ¡s NF; Jha HC J Biomol Struct Dyn; 2022; 40(21):10629-10650. PubMed ID: 34225565 [TBL] [Abstract][Full Text] [Related]
15. Enhanced Binding of SARS-CoV-2 Spike Protein to Receptor by Distal Polybasic Cleavage Sites. Qiao B; Olvera de la Cruz M ACS Nano; 2020 Aug; 14(8):10616-10623. PubMed ID: 32806067 [TBL] [Abstract][Full Text] [Related]
16. Conformational perturbation of SARS-CoV-2 spike protein using N-acetyl cysteine: an exploration of probable mechanism of action to combat COVID-19. Debnath U; Mitra A; Dewaker V; Prabhakar YS; Tadala R; Krishnan K; Wagh P; Velusamy U; Baliyan A; Kurpad AV; Bhattacharyya P; Mandal AK J Biomol Struct Dyn; 2024 Jul; 42(10):5042-5052. PubMed ID: 37477247 [TBL] [Abstract][Full Text] [Related]
17. Lead Finding from Selected Flavonoids with Antiviral (SARS-CoV-2) Potentials Against COVID-19: An In-silico Evaluation. Gorla US; Rao K; Kulandaivelu US; Alavala RR; Panda SP Comb Chem High Throughput Screen; 2021; 24(6):879-890. PubMed ID: 32819226 [TBL] [Abstract][Full Text] [Related]
18. Pinpointing the potential hits for hindering interaction of SARS-CoV-2 S-protein with ACE2 from the pool of antiviral phytochemicals utilizing molecular docking and molecular dynamics (MD) simulations. Patel CN; Goswami D; Jaiswal DG; Parmar RM; Solanki HA; Pandya HA J Mol Graph Model; 2021 Jun; 105():107874. PubMed ID: 33647752 [TBL] [Abstract][Full Text] [Related]
19. Excavating phytochemicals from plants possessing antiviral activities for identifying SARS-CoV hemagglutinin-esterase inhibitors by diligent computational workflow. Patel CN; Goswami D; Jaiswal DG; Jani SP; Parmar RM; Rawal RM; Pandya HA J Biomol Struct Dyn; 2023 Apr; 41(6):2382-2397. PubMed ID: 35098887 [TBL] [Abstract][Full Text] [Related]
20. Computational Alanine Scanning and Structural Analysis of the SARS-CoV-2 Spike Protein/Angiotensin-Converting Enzyme 2 Complex. Laurini E; Marson D; Aulic S; Fermeglia M; Pricl S ACS Nano; 2020 Sep; 14(9):11821-11830. PubMed ID: 32833435 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]