These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 32698720)

  • 1. ClusterMine: A knowledge-integrated clustering approach based on expression profiles of gene sets.
    Li HD; Xu Y; Zhu X; Liu Q; Omenn GS; Wang J
    J Bioinform Comput Biol; 2020 Jun; 18(3):2040009. PubMed ID: 32698720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beyond synexpression relationships: local clustering of time-shifted and inverted gene expression profiles identifies new, biologically relevant interactions.
    Qian J; Dolled-Filhart M; Lin J; Yu H; Gerstein M
    J Mol Biol; 2001 Dec; 314(5):1053-66. PubMed ID: 11743722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GO functional similarity clustering depends on similarity measure, clustering method, and annotation completeness.
    Liu M; Thomas PD
    BMC Bioinformatics; 2019 Mar; 20(1):155. PubMed ID: 30917779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SC(3): Triple spectral clustering-based consensus clustering framework for class discovery from cancer gene expression profiles.
    Zhiwen Y; Le L; Jane Y; Hau-San W; Guoqiang H
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(6):1751-65. PubMed ID: 22868680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamically weighted clustering with noise set.
    Shen Y; Sun W; Li KC
    Bioinformatics; 2010 Feb; 26(3):341-7. PubMed ID: 20007256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive Fuzzy Consensus Clustering Framework for Clustering Analysis of Cancer Data.
    Yu Z; Chen H; You J; Liu J; Wong HS; Han G; Li L
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(4):887-901. PubMed ID: 26357330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A network-assisted co-clustering algorithm to discover cancer subtypes based on gene expression.
    Liu Y; Gu Q; Hou JP; Han J; Ma J
    BMC Bioinformatics; 2014 Feb; 15():37. PubMed ID: 24491042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Knowledge-assisted recognition of cluster boundaries in gene expression data.
    Okada Y; Sahara T; Mitsubayashi H; Ohgiya S; Nagashima T
    Artif Intell Med; 2005; 35(1-2):171-83. PubMed ID: 16054350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fuzzy c-means clustering with prior biological knowledge.
    Tari L; Baral C; Kim S
    J Biomed Inform; 2009 Feb; 42(1):74-81. PubMed ID: 18595779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Judging the quality of gene expression-based clustering methods using gene annotation.
    Gibbons FD; Roth FP
    Genome Res; 2002 Oct; 12(10):1574-81. PubMed ID: 12368250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Knowledge based cluster ensemble for cancer discovery from biomolecular data.
    Yu Z; Wongb HS; You J; Yang Q; Liao H
    IEEE Trans Nanobioscience; 2011 Jun; 10(2):76-85. PubMed ID: 21742574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double Selection Based Semi-Supervised Clustering Ensemble for Tumor Clustering from Gene Expression Profiles.
    Yu Z; Chen H; You J; Wong HS; Liu J; Li L; Han G
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(4):727-40. PubMed ID: 26356343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A systematic comparison of data- and knowledge-driven approaches to disease subtype discovery.
    Rintala TJ; Federico A; Latonen L; Greco D; Fortino V
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34396389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-class clustering of cancer subtypes through SVM based ensemble of pareto-optimal solutions for gene marker identification.
    Mukhopadhyay A; Bandyopadhyay S; Maulik U
    PLoS One; 2010 Nov; 5(11):e13803. PubMed ID: 21103052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SifiNet: a robust and accurate method to identify feature gene sets and annotate cells.
    Gao Q; Ji Z; Wang L; Owzar K; Li QJ; Chan C; Xie J
    Nucleic Acids Res; 2024 May; 52(9):e46. PubMed ID: 38647069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. C-DEVA: Detection, evaluation, visualization and annotation of clusters from biological networks.
    Li M; Tang Y; Wu X; Wang J; Wu FX; Pan Y
    Biosystems; 2016 Dec; 150():78-86. PubMed ID: 27530307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seeing the forest for the trees: using the Gene Ontology to restructure hierarchical clustering.
    Dotan-Cohen D; Kasif S; Melkman AA
    Bioinformatics; 2009 Jul; 25(14):1789-95. PubMed ID: 19497934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clustering of gene expression data: performance and similarity analysis.
    Yin L; Huang CH; Ni J
    BMC Bioinformatics; 2006 Dec; 7 Suppl 4(Suppl 4):S19. PubMed ID: 17217511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mining gene expression data by interpreting principal components.
    Roden JC; King BW; Trout D; Mortazavi A; Wold BJ; Hart CE
    BMC Bioinformatics; 2006 Apr; 7():194. PubMed ID: 16600052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene expression data clustering using a multiobjective symmetry based clustering technique.
    Saha S; Ekbal A; Gupta K; Bandyopadhyay S
    Comput Biol Med; 2013 Nov; 43(11):1965-77. PubMed ID: 24209942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.