BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 32699195)

  • 1. Accelerated Growth of
    Park J; Lee S; Lee MJ; Park K; Lee S; Kim JF; Kim P
    J Microbiol Biotechnol; 2020 Sep; 30(9):1420-1429. PubMed ID: 32699195
    [No Abstract]   [Full Text] [Related]  

  • 2. Physiological response of Corynebacterium glutamicum to oxidative stress induced by deletion of the transcriptional repressor McbR.
    Krömer JO; Bolten CJ; Heinzle E; Schröder H; Wittmann C
    Microbiology (Reading); 2008 Dec; 154(Pt 12):3917-3930. PubMed ID: 19047758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reverse Engineering Targets for Recombinant Protein Production in
    Lee MJ; Park J; Park K; Kim JF; Kim P
    Front Bioeng Biotechnol; 2020; 8():588070. PubMed ID: 33363126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional regulation of the operon encoding stress-responsive ECF sigma factor SigH and its anti-sigma factor RshA, and control of its regulatory network in Corynebacterium glutamicum.
    Busche T; Silar R; Pičmanová M; Pátek M; Kalinowski J
    BMC Genomics; 2012 Sep; 13():445. PubMed ID: 22943411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impaired oxidative stress and sulfur assimilation contribute to acid tolerance of Corynebacterium glutamicum.
    Xu N; Lv H; Wei L; Liang Y; Ju J; Liu J; Ma Y
    Appl Microbiol Biotechnol; 2019 Feb; 103(4):1877-1891. PubMed ID: 30610289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of CO
    Krüger A; Wiechert J; Gätgens C; Polen T; Mahr R; Frunzke J
    J Bacteriol; 2019 Oct; 201(20):. PubMed ID: 31358612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive evolution of Corynebacterium glutamicum resistant to oxidative stress and its global gene expression profiling.
    Lee JY; Seo J; Kim ES; Lee HS; Kim P
    Biotechnol Lett; 2013 May; 35(5):709-17. PubMed ID: 23288296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of heme homeostasis in Corynebacterium glutamicum by the two-component system HrrSA.
    Frunzke J; Gätgens C; Brocker M; Bott M
    J Bacteriol; 2011 Mar; 193(5):1212-21. PubMed ID: 21217007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Next-generation sequencing-based transcriptome analysis of L-lysine-producing Corynebacterium glutamicum ATCC 21300 strain.
    Kim HI; Nam JY; Cho JY; Lee CS; Park YJ
    J Microbiol; 2013 Dec; 51(6):877-80. PubMed ID: 24385368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trehalose biosynthetic gene
    Park JC; Jeong H; Kim Y; Lee HS
    Microbiology (Reading); 2022 Jan; 168(1):. PubMed ID: 35040429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alterations in the transcription factors GntR1 and RamA enhance the growth and central metabolism of Corynebacterium glutamicum.
    Wang Z; Liu J; Chen L; Zeng AP; Solem C; Jensen PR
    Metab Eng; 2018 Jul; 48():1-12. PubMed ID: 29753071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global gene expression during stringent response in Corynebacterium glutamicum in presence and absence of the rel gene encoding (p)ppGpp synthase.
    Brockmann-Gretza O; Kalinowski J
    BMC Genomics; 2006 Sep; 7():230. PubMed ID: 16961923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome and Multivariable Data Analysis of Corynebacterium glutamicum under Different Dissolved Oxygen Conditions in Bioreactors.
    Sun Y; Guo W; Wang F; Peng F; Yang Y; Dai X; Liu X; Bai Z
    PLoS One; 2016; 11(12):e0167156. PubMed ID: 27907077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional genomics of pH homeostasis in Corynebacterium glutamicum revealed novel links between pH response, oxidative stress, iron homeostasis and methionine synthesis.
    Follmann M; Ochrombel I; Krämer R; Trötschel C; Poetsch A; Rückert C; Hüser A; Persicke M; Seiferling D; Kalinowski J; Marin K
    BMC Genomics; 2009 Dec; 10():621. PubMed ID: 20025733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a high-copy-number plasmid via adaptive laboratory evolution of Corynebacterium glutamicum.
    Choi JW; Yim SS; Jeong KJ
    Appl Microbiol Biotechnol; 2018 Jan; 102(2):873-883. PubMed ID: 29177939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of the osrR gene in the hydrogen peroxide-mediated stress response of Corynebacterium glutamicum.
    Hong EJ; Kim P; Kim ES; Kim Y; Lee HS
    Res Microbiol; 2016 Jan; 167(1):20-8. PubMed ID: 26433092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The PhoPR two-component system responds to oxygen deficiency and regulates the pathways for energy supply in Corynebacterium glutamicum.
    Peng F; Chen J; Liu X; Li Y; Liu C; Yang Y; Bai Z
    World J Microbiol Biotechnol; 2021 Aug; 37(9):160. PubMed ID: 34436681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The extracytoplasmic function-type sigma factor SigM of Corynebacterium glutamicum ATCC 13032 is involved in transcription of disulfide stress-related genes.
    Nakunst D; Larisch C; Hüser AT; Tauch A; Pühler A; Kalinowski J
    J Bacteriol; 2007 Jul; 189(13):4696-707. PubMed ID: 17483229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The LacI/GalR family transcriptional regulator UriR negatively controls uridine utilization of Corynebacterium glutamicum by binding to catabolite-responsive element (cre)-like sequences.
    Brinkrolf K; Plöger S; Solle S; Brune I; Nentwich SS; Hüser AT; Kalinowski J; Pühler A; Tauch A
    Microbiology (Reading); 2008 Apr; 154(Pt 4):1068-1081. PubMed ID: 18375800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. OsnR is an autoregulatory negative transcription factor controlling redox-dependent stress responses in Corynebacterium glutamicum.
    Jeong H; Kim Y; Lee HS
    Microb Cell Fact; 2021 Oct; 20(1):203. PubMed ID: 34663317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.