These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 32699275)
1. Control of the galactose-to-glucose consumption ratio in co-fermentation using engineered Escherichia coli strains. Seong HJ; Woo JE; Jang YS Sci Rep; 2020 Jul; 10(1):12132. PubMed ID: 32699275 [TBL] [Abstract][Full Text] [Related]
2. Accumulation of d-glucose from pentoses by metabolically engineered Escherichia coli. Xia T; Han Q; Costanzo WV; Zhu Y; Urbauer JL; Eiteman MA Appl Environ Microbiol; 2015 May; 81(10):3387-94. PubMed ID: 25746993 [TBL] [Abstract][Full Text] [Related]
3. Genome engineering Escherichia coli for L-DOPA overproduction from glucose. Wei T; Cheng BY; Liu JZ Sci Rep; 2016 Jul; 6():30080. PubMed ID: 27417146 [TBL] [Abstract][Full Text] [Related]
4. Engineered Escherichia coli capable of co-utilization of cellobiose and xylose. Vinuselvi P; Lee SK Enzyme Microb Technol; 2012 Jan; 50(1):1-4. PubMed ID: 22133432 [TBL] [Abstract][Full Text] [Related]
5. Metabolic engineering of Escherichia coli to produce succinate from soybean hydrolysate under anaerobic conditions. Zhu F; Wang Y; San KY; Bennett GN Biotechnol Bioeng; 2018 Jul; 115(7):1743-1754. PubMed ID: 29508908 [TBL] [Abstract][Full Text] [Related]
6. Deletion of four genes in Escherichia coli enables preferential consumption of xylose and secretion of glucose. Diaz CAC; Bennett RK; Papoutsakis ET; Antoniewicz MR Metab Eng; 2019 Mar; 52():168-177. PubMed ID: 30529131 [TBL] [Abstract][Full Text] [Related]
7. Engineered Escherichia coli for simultaneous utilization of galactose and glucose. Lim HG; Seo SW; Jung GY Bioresour Technol; 2013 May; 135():564-7. PubMed ID: 23246298 [TBL] [Abstract][Full Text] [Related]
8. Replacement of the glucose phosphotransferase transport system by galactose permease reduces acetate accumulation and improves process performance of Escherichia coli for recombinant protein production without impairment of growth rate. De Anda R; Lara AR; Hernández V; Hernández-Montalvo V; Gosset G; Bolívar F; Ramírez OT Metab Eng; 2006 May; 8(3):281-90. PubMed ID: 16517196 [TBL] [Abstract][Full Text] [Related]
9. [Recombinant Escherichia coli strains deficient in mixed acid fermentation pathways and capable of rapid aerobic growth on glucose with a reduced Crabtree effect]. Morzhakova AA; Skorokhodova AIu; Gulevich AIu; Debabov VG Prikl Biokhim Mikrobiol; 2013; 49(2):136-43. PubMed ID: 23795471 [TBL] [Abstract][Full Text] [Related]
10. Pyruvate dehydrogenase complex regulator (PdhR) gene deletion boosts glucose metabolism in Escherichia coli under oxygen-limited culture conditions. Maeda S; Shimizu K; Kihira C; Iwabu Y; Kato R; Sugimoto M; Fukiya S; Wada M; Yokota A J Biosci Bioeng; 2017 Apr; 123(4):437-443. PubMed ID: 28007420 [TBL] [Abstract][Full Text] [Related]
11. Phosphoenolpyruvate:glucose phosphotransferase system modification increases the conversion rate during L-tryptophan production in Escherichia coli. Liu L; Chen S; Wu J J Ind Microbiol Biotechnol; 2017 Oct; 44(10):1385-1395. PubMed ID: 28726163 [TBL] [Abstract][Full Text] [Related]
12. Efficient production of succinic acid from Palmaria palmata hydrolysate by metabolically engineered Escherichia coli. Olajuyin AM; Yang M; Liu Y; Mu T; Tian J; Adaramoye OA; Xing J Bioresour Technol; 2016 Aug; 214():653-659. PubMed ID: 27203224 [TBL] [Abstract][Full Text] [Related]
13. The isc gene cluster expression ethanol tolerance associated improves its ethanol production by organic acids flux redirection in the ethanologenic Escherichia coli KO11 strain. Martínez-Alcantar L; Díaz-Pérez AL; Campos-García J World J Microbiol Biotechnol; 2019 Nov; 35(12):189. PubMed ID: 31748890 [TBL] [Abstract][Full Text] [Related]
14. Engineering E. coli for simultaneous glucose-xylose utilization during methyl ketone production. Wang X; Goh EB; Beller HR Microb Cell Fact; 2018 Jan; 17(1):12. PubMed ID: 29374483 [TBL] [Abstract][Full Text] [Related]
15. Glucose consumption in carbohydrate mixtures by phosphotransferase-system mutants of Escherichia coli. Xia T; Sriram N; Lee SA; Altman R; Urbauer JL; Altman E; Eiteman MA Microbiology (Reading); 2017 Jun; 163(6):866-877. PubMed ID: 28640743 [TBL] [Abstract][Full Text] [Related]
16. Xylose-glucose co-fermentation to ethanol by Escherichia coli strain MS04 using single- and two-stage continuous cultures under micro-aerated conditions. Fernández-Sandoval MT; Galíndez-Mayer J; Bolívar F; Gosset G; Ramírez OT; Martinez A Microb Cell Fact; 2019 Aug; 18(1):145. PubMed ID: 31443652 [TBL] [Abstract][Full Text] [Related]
17. Enhanced production of 2,3-butanediol in pyruvate decarboxylase-deficient Saccharomyces cerevisiae through optimizing ratio of glucose/galactose. Choi EJ; Kim JW; Kim SJ; Seo SO; Lane S; Park YC; Jin YS; Seo JH Biotechnol J; 2016 Nov; 11(11):1424-1432. PubMed ID: 27528190 [TBL] [Abstract][Full Text] [Related]
18. Improved succinate production from galactose-rich feedstocks by engineered Escherichia coli under anaerobic conditions. Zhu F; San KY; Bennett GN Biotechnol Bioeng; 2020 Apr; 117(4):1082-1091. PubMed ID: 31868221 [TBL] [Abstract][Full Text] [Related]
19. Lack of glucose phosphotransferase function in phosphofructokinase mutants of Escherichia coli. Roehl RA; Vinopal RT J Bacteriol; 1976 May; 126(2):852-60. PubMed ID: 177406 [TBL] [Abstract][Full Text] [Related]
20. Enhanced plasmid DNA production by enzyme-controlled glucose release and an engineered Escherichia coli. Ramírez EA; Velázquez D; Lara AR Biotechnol Lett; 2016 Apr; 38(4):651-7. PubMed ID: 26696535 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]