These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 32699297)

  • 1. A residual-based deep learning approach for ghost imaging.
    Bian T; Yi Y; Hu J; Zhang Y; Wang Y; Gao L
    Sci Rep; 2020 Jul; 10(1):12149. PubMed ID: 32699297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ghost imaging based on asymmetric learning.
    Bian T; Dai Y; Hu J; Zheng Z; Gao L
    Appl Opt; 2020 Oct; 59(30):9548-9552. PubMed ID: 33104675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep-learning-based ghost imaging.
    Lyu M; Wang W; Wang H; Wang H; Li G; Chen N; Situ G
    Sci Rep; 2017 Dec; 7(1):17865. PubMed ID: 29259269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Color computational ghost imaging by deep learning based on simulation data training.
    Yu Z; Liu Y; Li J; Bai X; Yang Z; Ni Y; Zhou X
    Appl Opt; 2022 Feb; 61(4):1022-1029. PubMed ID: 35201070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ghost Imaging Based on Deep Learning.
    He Y; Wang G; Dong G; Zhu S; Chen H; Zhang A; Xu Z
    Sci Rep; 2018 Apr; 8(1):6469. PubMed ID: 29691452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning from simulation: An end-to-end deep-learning approach for computational ghost imaging.
    Wang F; Wang H; Wang H; Li G; Situ G
    Opt Express; 2019 Sep; 27(18):25560-25572. PubMed ID: 31510427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ghost imaging of blurred object based on deep-learning.
    Zhang Z; Wang C; Gong W; Zhang D
    Appl Opt; 2021 May; 60(13):3732-3739. PubMed ID: 33983305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Instant ghost imaging: algorithm and on-chip implementation.
    Yang Z; Zhang WX; Liu YP; Ruan D; Li JL
    Opt Express; 2020 Feb; 28(3):3607-3618. PubMed ID: 32122026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-speed computational ghost imaging based on an auto-encoder network under low sampling rate.
    Feng W; Sun X; Li X; Gao J; Zhao X; Zhao D
    Appl Opt; 2021 Jun; 60(16):4591-4598. PubMed ID: 34143013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Improvement of Motion Artifacts in Brain MRI Using Deep Learning by Simulation Training Data].
    Muro I; Shimizu S; Tsukamoto H
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2022; 78(1):13-22. PubMed ID: 35046218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An 8-layer residual U-Net with deep supervision for segmentation of the left ventricle in cardiac CT angiography.
    Li C; Song X; Zhao H; Feng L; Hu T; Zhang Y; Jiang J; Wang J; Xiang J; Sun Y
    Comput Methods Programs Biomed; 2021 Mar; 200():105876. PubMed ID: 33293183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Far-field super-resolution ghost imaging with a deep neural network constraint.
    Wang F; Wang C; Chen M; Gong W; Zhang Y; Han S; Situ G
    Light Sci Appl; 2022 Jan; 11(1):1. PubMed ID: 34974515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep convolutional neural network and IoT technology for healthcare.
    Wassan S; Dongyan H; Suhail B; Jhanjhi NZ; Xiao G; Ahmed S; Murugesan RK
    Digit Health; 2024; 10():20552076231220123. PubMed ID: 38250147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning enabled ultra-fast-pitch acquisition in clinical X-ray computed tomography.
    Gong H; Ren L; Hsieh SS; McCollough CH; Yu L
    Med Phys; 2021 Oct; 48(10):5712-5726. PubMed ID: 34415068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preventing forgery attacks in computational ghost imaging or disabling ghost imaging in a "spatiotemporal" scattering medium with weighted multiplicative signals.
    Ye Z; Huang T; Pan J; Zhang T; Cui Y; Wang HB; Xiong J
    Appl Opt; 2021 Feb; 60(5):1092-1098. PubMed ID: 33690556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafast water-fat separation using deep learning-based single-shot MRI.
    Chen X; Wang W; Huang J; Wu J; Chen L; Cai C; Cai S; Chen Z
    Magn Reson Med; 2022 Jun; 87(6):2811-2825. PubMed ID: 35099082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning early stopping for non-degenerate ghost imaging.
    Moodley C; Sephton B; Rodríguez-Fajardo V; Forbes A
    Sci Rep; 2021 Apr; 11(1):8561. PubMed ID: 33879802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. End-to-end memory-efficient reconstruction for cone beam CT.
    Moriakov N; Sonke JJ; Teuwen J
    Med Phys; 2023 Dec; 50(12):7579-7593. PubMed ID: 37846969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning from synthetic data for reference-free Nyquist ghost correction and parallel imaging reconstruction of echo planar imaging.
    Dai L; Yang Q; Lin J; Zhou Z; Zhang P; Cai S; Chen Z; Wu Z; Kang T; Cai C
    Med Phys; 2023 Apr; 50(4):2135-2147. PubMed ID: 36412171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deblurring Ghost Imaging Reconstruction Based on Underwater Dataset Generated by Few-Shot Learning.
    Yang X; Yu Z; Jiang P; Xu L; Hu J; Wu L; Zou B; Zhang Y; Zhang J
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.