These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 32699384)

  • 21. Effects of grain shape on the response of a two-dimensional granular material under constant shear rate.
    Sepúlveda N; Melo F; Vivanco F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052202. PubMed ID: 25493786
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Unifying suspension and granular rheology.
    Boyer F; Guazzelli É; Pouliquen O
    Phys Rev Lett; 2011 Oct; 107(18):188301. PubMed ID: 22107679
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Numerical study of stress distribution in sheared granular material in two dimensions.
    Bardenhagen SG; Brackbill JU; Sulsky D
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Sep; 62(3 Pt B):3882-90. PubMed ID: 11088908
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of inter-particle friction on rheology and texture of wet granular flows.
    Vo TT; Nguyen-Thoi T
    Eur Phys J E Soft Matter; 2020 Oct; 43(10):65. PubMed ID: 33006700
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A unified constitutive model for pressure sensitive shear flow transitions in moderate dense granular materials.
    Cheng X; Xiao S; Cao AS; Hou M
    Sci Rep; 2021 Oct; 11(1):19669. PubMed ID: 34608191
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Shear flow of dense granular materials near smooth walls. II. Block formation and suppression of slip by rolling friction.
    Shojaaee Z; Brendel L; Török J; Wolf DE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011302. PubMed ID: 23005406
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Geotechnical properties of municipal solid waste at different phases of biodegradation.
    Reddy KR; Hettiarachchi H; Gangathulasi J; Bogner JE
    Waste Manag; 2011 Nov; 31(11):2275-86. PubMed ID: 21767939
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Well-posed continuum equations for granular flow with compressibility and
    Barker T; Schaeffer DG; Shearer M; Gray JMNT
    Proc Math Phys Eng Sci; 2017 May; 473(2201):20160846. PubMed ID: 28588402
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phase diagram for inertial granular flows.
    DeGiuli E; McElwaine JN; Wyart M
    Phys Rev E; 2016 Jul; 94(1-1):012904. PubMed ID: 27575203
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of sock on biomechanical responses of foot during walking.
    Dai XQ; Li Y; Zhang M; Cheung JT
    Clin Biomech (Bristol); 2006 Mar; 21(3):314-21. PubMed ID: 16298465
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Study on shear behavior of kaolinite contaminated by heavy metal Cu (II).
    Zhang Z; Chen Y; Fang J; Guo F
    Environ Sci Pollut Res Int; 2019 May; 26(14):13906-13913. PubMed ID: 30811024
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quasistatic to inertial transition in granular materials and the role of fluctuations.
    Gaume J; Chambon G; Naaim M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 1):051304. PubMed ID: 22181408
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Use of elastic stability analysis to explain the stress-dependent nature of soil strength.
    Hanley KJ; O'Sullivan C; Wadee MA; Huang X
    R Soc Open Sci; 2015 Apr; 2(4):150038. PubMed ID: 26064642
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterisation of the mechanical behaviour of brain tissue in compression and shear.
    Hrapko M; van Dommelen JA; Peters GW; Wismans JS
    Biorheology; 2008; 45(6):663-76. PubMed ID: 19065013
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Monte Carlo calibration of avalanches described as Coulomb fluid flows.
    Ancey C
    Philos Trans A Math Phys Eng Sci; 2005 Jul; 363(1832):1529-50. PubMed ID: 16011932
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Shear modulus and reversible particle trajectories of frictional granular materials under oscillatory shear.
    Otsuki M; Hayakawa H
    Eur Phys J E Soft Matter; 2021 May; 44(5):70. PubMed ID: 34014409
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Grain size distribution does not affect the residual shear strength of granular materials: An experimental proof.
    Polanía O; Cabrera M; Renouf M; Azéma E; Estrada N
    Phys Rev E; 2023 May; 107(5):L052901. PubMed ID: 37328967
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of Rolling Resistance Model Parameters on 3D DEM Modeling of Coarse Sand Direct Shear Test.
    Benmebarek MA; Movahedi Rad M
    Materials (Basel); 2023 Mar; 16(5):. PubMed ID: 36903193
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nonlocal rheology of dense granular flow in annular shear experiments.
    Tang Z; Brzinski TA; Shearer M; Daniels KE
    Soft Matter; 2018 Apr; 14(16):3040-3048. PubMed ID: 29637211
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Force fluctuations at the transition from quasi-static to inertial granular flow.
    Thomas AL; Tang Z; Daniels KE; Vriend NM
    Soft Matter; 2019 Oct; 15(42):8532-8542. PubMed ID: 31633145
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.