These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 32699565)

  • 21. The pressure drop along rectangular microchannels containing bubbles.
    Fuerstman MJ; Lai A; Thurlow ME; Shevkoplyas SS; Stone HA; Whitesides GM
    Lab Chip; 2007 Nov; 7(11):1479-89. PubMed ID: 17960275
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Frequency dependent multiphase flows on centrifugal microfluidics.
    Pishbin E; Kazemzadeh A; Chimerad M; Asiaei S; Navidbakhsh M; Russom A
    Lab Chip; 2020 Feb; 20(3):514-524. PubMed ID: 31898702
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system.
    Lima R; Wada S; Tanaka S; Takeda M; Ishikawa T; Tsubota K; Imai Y; Yamaguchi T
    Biomed Microdevices; 2008 Apr; 10(2):153-67. PubMed ID: 17885805
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inner Surface Design of Functional Microchannels for Microscale Flow Control.
    Wang S; Yang X; Wu F; Min L; Chen X; Hou X
    Small; 2020 Mar; 16(9):e1905318. PubMed ID: 31793747
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the halt of spontaneous capillary flows in diverging open channels.
    Berthier J; Brakke KA; Gosselin D; Navarro F; Belgacem N; Chaussy D; Berthier E
    Med Eng Phys; 2017 Oct; 48():75-80. PubMed ID: 28619593
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Capillary-Driven Flow Microfluidics Combined with Smartphone Detection: An Emerging Tool for Point-of-Care Diagnostics.
    Hassan SU; Tariq A; Noreen Z; Donia A; Zaidi SZJ; Bokhari H; Zhang X
    Diagnostics (Basel); 2020 Jul; 10(8):. PubMed ID: 32708045
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A numerical lift force analysis on the inertial migration of a deformable droplet in steady and oscillatory microchannel flows.
    Lafzi A; Dabiri S
    Lab Chip; 2022 Aug; 22(17):3245-3257. PubMed ID: 35899760
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electroosmotically driven capillary transport of typical non-Newtonian biofluids in rectangular microchannels.
    Chakraborty S
    Anal Chim Acta; 2007 Dec; 605(2):175-84. PubMed ID: 18036381
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of viscoelasticity on the flow pattern and the volumetric flow rate in electroosmotic flows through a microchannel.
    Park HM; Lee WM
    Lab Chip; 2008 Jul; 8(7):1163-70. PubMed ID: 18584093
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Study on Flow Characteristics of Working Medium in Microchannel Simulated by Porous Media Model.
    Xue Y; Guo C; Gu X; Xu Y; Xue L; Lin H
    Micromachines (Basel); 2020 Dec; 12(1):. PubMed ID: 33375336
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A passive and programmable 3D paper-based microfluidic pump for variable flow microfluidic applications.
    Shah SF; Jafry AT; Hussain G; Kazim AH; Ali M
    Biomicrofluidics; 2022 Dec; 16(6):064106. PubMed ID: 36536792
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flow control in a laminate capillary-driven microfluidic device.
    Jang I; Kang H; Song S; Dandy DS; Geiss BJ; Henry CS
    Analyst; 2021 Mar; 146(6):1932-1939. PubMed ID: 33492316
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Temperature Gradients Drive Bulk Flow Within Microchannel Lined by Fluid-Fluid Interfaces.
    Amador GJ; Ren Z; Tabak AF; Alapan Y; Yasa O; Sitti M
    Small; 2019 May; 15(21):e1900472. PubMed ID: 30993841
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rational design of capillary-driven flows for paper-based microfluidics.
    Elizalde E; Urteaga R; Berli CL
    Lab Chip; 2015 May; 15(10):2173-80. PubMed ID: 25813247
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamics of Capillary-Driven Flow in 3D Printed Open Microchannels.
    Lade RK; Hippchen EJ; Macosko CW; Francis LF
    Langmuir; 2017 Mar; 33(12):2949-2964. PubMed ID: 28274121
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optical Feedback Interferometry for Velocity Measurement of Parallel Liquid-Liquid Flows in a Microchannel.
    Ramírez-Miquet EE; Perchoux J; Loubière K; Tronche C; Prat L; Sotolongo-Costa O
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27527178
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An analysis of induced pressure fields in electroosmotic flows through microchannels.
    Zhang Y; Gu XJ; Barber RW; Emerson DR
    J Colloid Interface Sci; 2004 Jul; 275(2):670-8. PubMed ID: 15178302
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Splitting and separation of colloidal streams in sinusoidal microchannels.
    Schlenk M; Drechsler M; Karg M; Zimmermann W; Trebbin M; Förster S
    Lab Chip; 2018 Oct; 18(20):3163-3171. PubMed ID: 30187066
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Capillary Flow in Open Microgrooves: Bifurcations and Networks.
    Lee JJ; Berthier J; Theberge AB; Berthier E
    Langmuir; 2019 Aug; 35(32):10667-10675. PubMed ID: 31318573
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-performance PCB-based capillary pumps for affordable point-of-care diagnostics.
    Vasilakis N; Papadimitriou KI; Morgan H; Prodromakis T
    Microfluid Nanofluidics; 2017; 21(6):103. PubMed ID: 32025228
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.