These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32699565)

  • 41. Numerical analysis of field-modulated electroosmotic flows in microchannels with arbitrary numbers and configurations of discrete electrodes.
    Chao K; Chen B; Wu J
    Biomed Microdevices; 2010 Dec; 12(6):959-66. PubMed ID: 20668948
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Theory of the flow-induced deformation of shallow compliant microchannels with thick walls.
    Wang X; Christov IC
    Proc Math Phys Eng Sci; 2019 Nov; 475(2231):20190513. PubMed ID: 31824223
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Continuous particle separation in spiral microchannels using Dean flows and differential migration.
    Bhagat AA; Kuntaegowdanahalli SS; Papautsky I
    Lab Chip; 2008 Nov; 8(11):1906-14. PubMed ID: 18941692
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Inertial Separation of Particles Assisted by Symmetrical Sheath Flows in a Straight Microchannel.
    Zhang T; Inglis DW; Ngo L; Wang Y; Hosokawa Y; Yalikun Y; Li M
    Anal Chem; 2023 Jul; 95(29):11132-11140. PubMed ID: 37455389
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bifurcations in flows of complex fluids around microfluidic cylinders.
    Haward SJ; Hopkins CC; Varchanis S; Shen AQ
    Lab Chip; 2021 Oct; 21(21):4041-4059. PubMed ID: 34647558
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Innovative Hydrophobic Valve Allows Complex Liquid Manipulations in a Self-Powered Channel-Based Microfluidic Device.
    Dal Dosso F; Tripodi L; Spasic D; Kokalj T; Lammertyn J
    ACS Sens; 2019 Mar; 4(3):694-703. PubMed ID: 30807106
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Traffic of leukocytes in microfluidic channels with rectangular and rounded cross-sections.
    Yang X; Forouzan O; Burns JM; Shevkoplyas SS
    Lab Chip; 2011 Oct; 11(19):3231-40. PubMed ID: 21847500
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Deformation of a Red Blood Cell in a Narrow Rectangular Microchannel.
    Takeishi N; Ito H; Kaneko M; Wada S
    Micromachines (Basel); 2019 Mar; 10(3):. PubMed ID: 30901883
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Self-coalescing flows in microfluidics for pulse-shaped delivery of reagents.
    Gökçe O; Castonguay S; Temiz Y; Gervais T; Delamarche E
    Nature; 2019 Oct; 574(7777):228-232. PubMed ID: 31597972
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Review of Capillary Pressure Control Valves in Microfluidics.
    Wang S; Zhang X; Ma C; Yan S; Inglis D; Feng S
    Biosensors (Basel); 2021 Oct; 11(10):. PubMed ID: 34677361
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Capillary filling in microchannels patterned by posts.
    Mognetti BM; Yeomans JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):056309. PubMed ID: 20365075
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Secondary Flows, Mixing, and Chemical Reaction Analysis of Droplet-Based Flow inside Serpentine Microchannels with Different Cross Sections.
    Ghazimirsaeed E; Madadelahi M; Dizani M; Shamloo A
    Langmuir; 2021 May; 37(17):5118-5130. PubMed ID: 33877832
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Analysis of Capillary Flow in a Parallel Microchannel-Based Wick Structure with Circular and Noncircular Geometries.
    Ma B
    Langmuir; 2020 Nov; 36(45):13485-13497. PubMed ID: 33151083
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enhanced Flow Boiling in Microchannels Integrated with Hierarchical Structures of Micro-Pinfin Fences and Nanowires.
    Chang W; Li W; Ma J; Luo K; Li C
    Langmuir; 2021 Aug; 37(30):8989-8996. PubMed ID: 34281343
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Two-dimensional spatial manipulation of microparticles in continuous flows in acoustofluidic systems.
    Gao L; Wyatt Shields C; Johnson LM; Graves SW; Yellen BB; López GP
    Biomicrofluidics; 2015 Jan; 9(1):014105. PubMed ID: 25713687
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Passive microfluidic pumping using coupled capillary/evaporation effects.
    Lynn NS; Dandy DS
    Lab Chip; 2009 Dec; 9(23):3422-9. PubMed ID: 19904410
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Injection and flow control system for microchannels.
    Fütterer C; Minc N; Bormuth V; Codarbox JH; Laval P; Rossier J; Viovy JL
    Lab Chip; 2004 Aug; 4(4):351-6. PubMed ID: 15269803
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Open-Channel Capillary Trees and Capillary Pumping.
    Lee JJ; Berthier J; Kearney KE; Berthier E; Theberge AB
    Langmuir; 2020 Nov; 36(43):12795-12803. PubMed ID: 32936651
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microbubble moving in blood flow in microchannels: effect on the cell-free layer and cell local concentration.
    Bento D; Sousa L; Yaginuma T; Garcia V; Lima R; Miranda JM
    Biomed Microdevices; 2017 Mar; 19(1):6. PubMed ID: 28092011
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mixing Performance of a Planar Asymmetric Contraction-and-Expansion Micromixer.
    Natsuhara D; Saito R; Okamoto S; Nagai M; Shibata T
    Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36144009
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.