These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 32699868)

  • 21. Unusual temperature-induced swelling of ionizable poly(N-isopropylacrylamide)-based microgels: experimental and theoretical insights into its molecular origin.
    Giussi JM; Velasco MI; Longo GS; Acosta RH; Azzaroni O
    Soft Matter; 2015 Dec; 11(45):8879-86. PubMed ID: 26400774
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microgel particles containing methacrylic acid: pH-triggered swelling behaviour and potential for biomaterial application.
    Lally S; Mackenzie P; LeMaitre CL; Freemont TJ; Saunders BR
    J Colloid Interface Sci; 2007 Dec; 316(2):367-75. PubMed ID: 17765913
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Studying stirred yogurt microstructure using optical microscopy: How smoothing temperature and storage time affect microgel size related to syneresis.
    Gilbert A; Rioux LE; St-Gelais D; Turgeon SL
    J Dairy Sci; 2020 Mar; 103(3):2139-2152. PubMed ID: 31980226
    [TBL] [Abstract][Full Text] [Related]  

  • 24. From Batch to Continuous Precipitation Polymerization of Thermoresponsive Microgels.
    Wolff HJM; Kather M; Breisig H; Richtering W; Pich A; Wessling M
    ACS Appl Mater Interfaces; 2018 Jul; 10(29):24799-24806. PubMed ID: 29952202
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Concentration dependence of the dynamics of microgel suspensions investigated by dynamic light scattering.
    Kureha T; Minato H; Suzuki D; Urayama K; Shibayama M
    Soft Matter; 2019 Jul; 15(27):5390-5399. PubMed ID: 31204747
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flow properties reveal the particle-to-polymer transition of ultra-low crosslinked microgels.
    Scotti A; Brugnoni M; G Lopez C; Bochenek S; Crassous JJ; Richtering W
    Soft Matter; 2020 Jan; 16(3):668-678. PubMed ID: 31815271
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Organization of Microgels at the Air-Water Interface under Compression: Role of Electrostatics and Cross-Linking Density.
    Picard C; Garrigue P; Tatry MC; Lapeyre V; Ravaine S; Schmitt V; Ravaine V
    Langmuir; 2017 Aug; 33(32):7968-7981. PubMed ID: 28718651
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pickering emulsions stabilized by soft microgels: influence of the emulsification process on particle interfacial organization and emulsion properties.
    Destribats M; Wolfs M; Pinaud F; Lapeyre V; Sellier E; Schmitt V; Ravaine V
    Langmuir; 2013 Oct; 29(40):12367-74. PubMed ID: 24050149
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Study of pH-responsive microgels containing methacrylic acid: effects of particle composition and added calcium.
    Dalmont H; Pinprayoon O; Saunders BR
    Langmuir; 2008 Mar; 24(6):2834-40. PubMed ID: 18290684
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Temperature response of PNIPAM derivatives at planar surfaces: comparison between polyelectrolyte multilayers and adsorbed microgels.
    Burmistrova A; Steitz R; von Klitzing R
    Chemphyschem; 2010 Dec; 11(17):3571-9. PubMed ID: 21086485
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Doubly crosslinked poly(vinyl amine) microgels: hydrogels of covalently inter-linked cationic microgel particles.
    Thaiboonrod S; Milani AH; Saunders BR
    J Mater Chem B; 2014 Jan; 2(1):110-119. PubMed ID: 32261304
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation and characterization of microgels sensitive toward copper II ions.
    Muratalin M; Luckham PF
    J Colloid Interface Sci; 2013 Apr; 396():1-8. PubMed ID: 23403115
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of volume transition on the net charge of poly-N-isopropyl acrylamide microgels.
    Braibanti M; Haro-Pérez C; Quesada-Pérez M; Rojas-Ochoa LF; Trappe V
    Phys Rev E; 2016 Sep; 94(3-1):032601. PubMed ID: 27739781
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interfacial layers of stimuli-responsive poly-(N-isopropylacrylamide-co-methacrylicacid) (PNIPAM-co-MAA) microgels characterized by interfacial rheology and compression isotherms.
    Brugger B; Vermant J; Richtering W
    Phys Chem Chem Phys; 2010 Nov; 12(43):14573-8. PubMed ID: 20941404
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the structure of poly(N-isopropylacrylamide) microgel particles.
    Saunders BR
    Langmuir; 2004 May; 20(10):3925-32. PubMed ID: 15969381
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Viscosity of soft spherical micro-hydrogel suspensions.
    Shewan HM; Stokes JR
    J Colloid Interface Sci; 2015 Mar; 442():75-81. PubMed ID: 25521552
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Collapse-induced phase transitions in binary interfacial microgel monolayers.
    Harrer J; Ciarella S; Rey M; Löwen H; Janssen LMC; Vogel N
    Soft Matter; 2021 May; 17(17):4504-4516. PubMed ID: 33949612
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distribution of CoFe
    Witt MU; Hinrichs S; Möller N; Backes S; Fischer B; von Klitzing R
    J Phys Chem B; 2019 Mar; 123(10):2405-2413. PubMed ID: 30747535
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Visualizing the interaction between poly-L-lysine and poly(acrylic acid) microgels using microscopy techniques: effect of electrostatics and peptide size.
    Bysell H; Malmsten M
    Langmuir; 2006 Jun; 22(12):5476-84. PubMed ID: 16732680
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigation of Changes in the Microscopic Structure of Anionic Poly(N-isopropylacrylamide-co-Acrylic acid) Microgels in the Presence of Cationic Organic Dyes toward Precisely Controlled Uptake/Release of Low-Molecular-Weight Chemical Compound.
    Kureha T; Shibamoto T; Matsui S; Sato T; Suzuki D
    Langmuir; 2016 May; 32(18):4575-85. PubMed ID: 27101468
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.