BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 32700251)

  • 1. Role of Circular Ribonucleic Acids in the Treatment of Traumatic Brain and Spinal Cord Injury.
    Yuan J; Botchway BOA; Zhang Y; Wang X; Liu X
    Mol Neurobiol; 2020 Oct; 57(10):4296-4304. PubMed ID: 32700251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The potential roles of circular RNAs as modulators in traumatic spinal cord injury.
    Bie F; Wang K; Xu T; Yuan J; Ding H; Lv B; Liu Y; Lan M
    Biomed Pharmacother; 2021 Sep; 141():111826. PubMed ID: 34328121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The emerging roles of circular RNAs in CNS injuries.
    Qu X; Li Z; Chen J; Hou L
    J Neurosci Res; 2020 Jul; 98(7):1485-1497. PubMed ID: 32052488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential Expression Profiles and Functional Predication of Circular Ribonucleic Acid in Traumatic Spinal Cord Injury of Rats.
    Zhou ZB; Du D; Chen KZ; Deng LF; Niu YL; Zhu L
    J Neurotrauma; 2019 Aug; 36(15):2287-2297. PubMed ID: 30681027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circular Ribonucleic Acid Expression Profile in Mouse Cortex after Traumatic Brain Injury.
    Jiang YJ; Cao SQ; Gao LB; Wang YY; Zhou B; Hu X; Pu Y; Li ZL; Wang Q; Xiao X; Zhao L; Wang S; Liang WB; Zhang L
    J Neurotrauma; 2019 Apr; 36(7):1018-1028. PubMed ID: 30261810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circular Ribonucleic Acid Expression Alteration in the Spinal Cord Tissue after Spinal Cord Injury in Rats.
    Xu C; Hu H; Yi T; Zeng X; Hu Y; Ma J
    Neuroimmunomodulation; 2022; 29(2):97-116. PubMed ID: 34535590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inflammasome: Its role in traumatic brain and spinal cord injury.
    Mortezaee K; Khanlarkhani N; Beyer C; Zendedel A
    J Cell Physiol; 2018 Jul; 233(7):5160-5169. PubMed ID: 29150951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microarray assay of circular RNAs reveals cicRNA.7079 as a new anti-apoptotic molecule in spinal cord injury in mice.
    Yao Y; Wang J; He T; Li H; Hu J; Zheng M; Ding Y; Chen YY; Shen Y; Wang LL; Zhu Y
    Brain Res Bull; 2020 Nov; 164():157-171. PubMed ID: 32882320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An update on the roles of circular RNAs in spinal cord injury.
    Ma X; Wang X; Ma X; Zhang X; Gong X; Sun R; Wong SH; Chan MTV; Wu WKK
    Mol Neurobiol; 2022 Apr; 59(4):2620-2628. PubMed ID: 35112318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Circular Ribonucleic Acid Expression Alteration in Exosomes from the Brain Extracellular Space after Traumatic Brain Injury in Mice.
    Zhao RT; Zhou J; Dong XL; Bi CW; Jiang RC; Dong JF; Tian Y; Yuan HJ; Zhang JN
    J Neurotrauma; 2018 Sep; 35(17):2056-2066. PubMed ID: 29409384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A circRNA derived from linear HIPK3 relieves the neuronal cell apoptosis in spinal cord injury via ceRNA pattern.
    Zhao J; Qi X; Bai J; Gao X; Cheng L
    Biochem Biophys Res Commun; 2020 Jul; 528(2):359-367. PubMed ID: 32247616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel circular RNA 2960 contributes to secondary damage of spinal cord injury by sponging miRNA-124.
    Chen J; Fu B; Bao J; Su R; Zhao H; Liu Z
    J Comp Neurol; 2021 May; 529(7):1456-1464. PubMed ID: 32918278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential Response in Novel Stem Cell Niches of the Brain after Cervical Spinal Cord Injury and Traumatic Brain Injury.
    Falnikar A; Stratton J; Lin R; Andrews CE; Tyburski A; Trovillion VA; Gottschalk C; Ghosh B; Iacovitti L; Elliott MB; Lepore AC
    J Neurotrauma; 2018 Sep; 35(18):2195-2207. PubMed ID: 29471717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research progress of microRNA in spinal cord injury.
    Wei DM; Fang R; Deng ZZ; Bai XY; Zhu JH; Zhai TY; Zhang C; Gao JZ; Su D; Yang YL; Zhao L
    Sheng Li Xue Bao; 2024 Jun; 76(3):394-406. PubMed ID: 38939934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coding and long non-coding gene expression changes in the CNS traumatic injuries.
    Wu X; Wei H; Wu JQ
    Cell Mol Life Sci; 2022 Feb; 79(2):123. PubMed ID: 35129669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dexmedetomidine inhibits inflammatory response and autophagy through the circLrp1b/miR-27a-3p/Dram2 pathway in a rat model of traumatic brain injury.
    Li H; Lu C; Yao W; Xu L; Zhou J; Zheng B
    Aging (Albany NY); 2020 Nov; 12(21):21687-21705. PubMed ID: 33147167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive analysis of circRNA expression profiles in rat cerebral cortex after moderate traumatic brain injury.
    Li G; Li S; Liu R; Yu J; Ma H; Zhao Y
    Int J Med Sci; 2022; 19(4):779-788. PubMed ID: 35582420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exosomes Derived from miR-126-modified MSCs Promote Angiogenesis and Neurogenesis and Attenuate Apoptosis after Spinal Cord Injury in Rats.
    Huang JH; Xu Y; Yin XM; Lin FY
    Neuroscience; 2020 Jan; 424():133-145. PubMed ID: 31704348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MicroRNA-based therapeutics in central nervous system injuries.
    Sun P; Liu DZ; Jickling GC; Sharp FR; Yin KJ
    J Cereb Blood Flow Metab; 2018 Jul; 38(7):1125-1148. PubMed ID: 29708005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An update to pain management after spinal cord injury: from pharmacology to circRNAs.
    Mazzone GL; Coronel MF; Mladinic M; Sámano C
    Rev Neurosci; 2023 Aug; 34(6):599-611. PubMed ID: 36351309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.