These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 32700281)
1. A new integrated data mining model to map spatial variation in the susceptibility of land to act as a source of aeolian dust. Gholami H; Mohammadifar A; Pourghasemi HR; Collins AL Environ Sci Pollut Res Int; 2020 Nov; 27(33):42022-42039. PubMed ID: 32700281 [TBL] [Abstract][Full Text] [Related]
2. Analysis of some factors related to dust storms occurrence in the Sistan region. Namdari S; Valizadeh Kamran K; Sorooshian A Environ Sci Pollut Res Int; 2021 Sep; 28(33):45450-45458. PubMed ID: 33866504 [TBL] [Abstract][Full Text] [Related]
3. An investigation into climatic and terrestrial drivers of dust storms in the Sistan region of Iran in the early twenty-first century. Miri A; Maleki S; Middleton N Sci Total Environ; 2021 Feb; 757():143952. PubMed ID: 33307404 [TBL] [Abstract][Full Text] [Related]
4. Investigation of wind erosion process for estimation, prevention, and control of DSS in Yazd-Ardakan plain. Ekhtesasi MR; Sepehr A Environ Monit Assess; 2009 Dec; 159(1-4):267-80. PubMed ID: 19052891 [TBL] [Abstract][Full Text] [Related]
5. Spatial mapping of land susceptibility to dust emissions using optimization of attentive Interpretable Tabular Learning (TabNet) model. Razavi-Termeh SV; Sadeghi-Niaraki A; Sorooshian A; Abuhmed T; Choi SM J Environ Manage; 2024 May; 358():120682. PubMed ID: 38670008 [TBL] [Abstract][Full Text] [Related]
6. Assessment of chemical and mineralogical characteristics of airborne dust in the Sistan region, Iran. Rashki A; Eriksson PG; Rautenbach CJ; Kaskaoutis DG; Grote W; Dykstra J Chemosphere; 2013 Jan; 90(2):227-36. PubMed ID: 22835867 [TBL] [Abstract][Full Text] [Related]
7. Dust detection and susceptibility mapping by aiding satellite imagery time series and integration of ensemble machine learning with evolutionary algorithms. Razavi-Termeh SV; Sadeghi-Niaraki A; Naqvi RA; Choi SM Environ Pollut; 2023 Oct; 335():122241. PubMed ID: 37482338 [TBL] [Abstract][Full Text] [Related]
8. Mapping of dust source susceptibility by remote sensing and machine learning techniques (case study: Iran-Iraq border). Pourhashemi S; Asadi MAZ; Boroughani M; Azadi H Environ Sci Pollut Res Int; 2023 Feb; 30(10):27965-27979. PubMed ID: 36394809 [TBL] [Abstract][Full Text] [Related]
9. Land susceptibility to water and wind erosion risks in the East Africa region. Fenta AA; Tsunekawa A; Haregeweyn N; Poesen J; Tsubo M; Borrelli P; Panagos P; Vanmaercke M; Broeckx J; Yasuda H; Kawai T; Kurosaki Y Sci Total Environ; 2020 Feb; 703():135016. PubMed ID: 31734497 [TBL] [Abstract][Full Text] [Related]
10. Dust provenance in Pan-third pole modern glacierized regions: What is the regional source? Du Z; Xiao C; Wang Y; Liu S; Li S Environ Pollut; 2019 Jul; 250():762-772. PubMed ID: 31035159 [TBL] [Abstract][Full Text] [Related]
11. Aeolian dust in Colorado Plateau soils: nutrient inputs and recent change in source. Reynolds R; Belnap J; Reheis M; Lamothe P; Luiszer F Proc Natl Acad Sci U S A; 2001 Jun; 98(13):7123-7. PubMed ID: 11390965 [TBL] [Abstract][Full Text] [Related]
12. Provenance and environmental risk of windblown materials from mine tailing ponds, Murcia, Spain. Khademi H; Abbaspour A; Martínez-Martínez S; Gabarrón M; Shahrokh V; Faz A; Acosta JA Environ Pollut; 2018 Oct; 241():432-440. PubMed ID: 29860159 [TBL] [Abstract][Full Text] [Related]
13. Investigating the Role of Wind in the Dispersion of Heavy Metals Around Mines in Arid Regions (a Case Study from Kushk Pb-Zn Mine, Bafgh, Iran). Mokhtari AR; Feiznia S; Jafari M; Tavili A; Ghaneei-Bafghi MJ; Rahmany F; Kerry R Bull Environ Contam Toxicol; 2018 Jul; 101(1):124-130. PubMed ID: 29549457 [TBL] [Abstract][Full Text] [Related]
14. Spatio-Temporal Modelling of Dust Transport over Surface Mining Areas and Neighbouring Residential Zones. Matejicek L; Janour Z; Benes L; Bodnar T; Gulikova E Sensors (Basel); 2008 Jun; 8(6):3830-3847. PubMed ID: 27879911 [TBL] [Abstract][Full Text] [Related]
15. [Localization of Soil Wind Erosion Dust Emission Factor in Beijing]. Li BB; Huang YH; Bi XH; Liu LY; Qin JP Huan Jing Ke Xue; 2020 Jun; 41(6):2609-2616. PubMed ID: 32608775 [TBL] [Abstract][Full Text] [Related]
16. Vulnerability mapping and risk analysis of sand and dust storms in Ahvaz, IRAN. Boloorani AD; Shorabeh SN; Neysani Samany N; Mousivand A; Kazemi Y; Jaafarzadeh N; Zahedi A; Rabiei J Environ Pollut; 2021 Jun; 279():116859. PubMed ID: 33744637 [TBL] [Abstract][Full Text] [Related]
17. [Emission Characteristics of Wind Erosion Dust from Topsoil of Urban Roadside-Tree Pool]. Li BB; Qin JP; Qi LR; Yang T; Qu S; Shi AJ; Huang YH Huan Jing Ke Xue; 2018 Mar; 39(3):1031-1039. PubMed ID: 29965446 [TBL] [Abstract][Full Text] [Related]
18. High-resolution, spatially resolved quantification of wind erosion rates based on UAV images (case study: Sistan region, southeastern Iran). Poormorteza S; Gholami H; Rashki A; Moradi N Environ Sci Pollut Res Int; 2023 Feb; 30(8):21694-21707. PubMed ID: 36279054 [TBL] [Abstract][Full Text] [Related]
19. Large-scale digital mapping of topsoil total nitrogen using machine learning models and associated uncertainty map. Parsaie F; Farrokhian Firouzi A; Mousavi SR; Rahmani A; Sedri MH; Homaee M Environ Monit Assess; 2021 Mar; 193(4):162. PubMed ID: 33665671 [TBL] [Abstract][Full Text] [Related]
20. Improving the Non-Hydrostatic Numerical Dust Model by Integrating Soil Moisture and Greenness Vegetation Fraction Data with Different Spatiotemporal Resolutions. Yu M; Yang C PLoS One; 2016; 11(12):e0165616. PubMed ID: 27936136 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]