These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 32700507)

  • 1. [Regulatory mechanisms of photosynthesis light reactions in higher plants].
    Węgrzyn A; Mazur R
    Postepy Biochem; 2020 Jun; 66(2):134-142. PubMed ID: 32700507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The regulation of the chloroplast proton motive force plays a key role for photosynthesis in fluctuating light.
    Armbruster U; Correa Galvis V; Kunz HH; Strand DD
    Curr Opin Plant Biol; 2017 Jun; 37():56-62. PubMed ID: 28426975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photosynthetic sea slugs induce protective changes to the light reactions of the chloroplasts they steal from algae.
    Havurinne V; Tyystjärvi E
    Elife; 2020 Oct; 9():. PubMed ID: 33077025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term and short-term responses of the photosynthetic electron transport to fluctuating light.
    Kono M; Terashima I
    J Photochem Photobiol B; 2014 Aug; 137():89-99. PubMed ID: 24776379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions.
    Kramer DM; Avenson TJ; Edwards GE
    Trends Plant Sci; 2004 Jul; 9(7):349-57. PubMed ID: 15231280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic Changes in Protein-Membrane Association for Regulating Photosynthetic Electron Transport.
    Messant M; Krieger-Liszkay A; Shimakawa G
    Cells; 2021 May; 10(5):. PubMed ID: 34065690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrative regulatory network of plant thylakoid energy transduction.
    Tikkanen M; Aro EM
    Trends Plant Sci; 2014 Jan; 19(1):10-7. PubMed ID: 24120261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The chloroplast NADPH thioredoxin reductase C, NTRC, controls non-photochemical quenching of light energy and photosynthetic electron transport in Arabidopsis.
    Naranjo B; Mignée C; Krieger-Liszkay A; Hornero-Méndez D; Gallardo-Guerrero L; Cejudo FJ; Lindahl M
    Plant Cell Environ; 2016 Apr; 39(4):804-22. PubMed ID: 26476233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chloroplast redox signals: how photosynthesis controls its own genes.
    Pfannschmidt T
    Trends Plant Sci; 2003 Jan; 8(1):33-41. PubMed ID: 12523998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pigment systems and electron transport in chloroplasts. I. Quantum requirements for the two light reactions in spinach chloroplasts.
    Sun AS; Sauer K
    Biochim Biophys Acta; 1971 Jun; 234(3):399-414. PubMed ID: 4399020
    [No Abstract]   [Full Text] [Related]  

  • 11. Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response.
    Rumeau D; Peltier G; Cournac L
    Plant Cell Environ; 2007 Sep; 30(9):1041-51. PubMed ID: 17661746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absorption and transfer of light and photoreduction activities of spinach chloroplasts under calcium deficiency: promotion by cerium.
    Hao H; Ling C; Xiaoqing L; Chao L; Weiqian C; Yun L; Fashui H
    Biol Trace Elem Res; 2008 May; 122(2):157-67. PubMed ID: 18193396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of photosynthesis by ion channels in cyanobacteria and higher plants.
    Checchetto V; Teardo E; Carraretto L; Formentin E; Bergantino E; Giacometti GM; Szabo I
    Biophys Chem; 2013 Dec; 182():51-7. PubMed ID: 23891570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auxiliary electron transport pathways in chloroplasts of microalgae.
    Peltier G; Tolleter D; Billon E; Cournac L
    Photosynth Res; 2010 Nov; 106(1-2):19-31. PubMed ID: 20607407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multilevel regulation of non-photochemical quenching and state transitions by chloroplast NADPH-dependent thioredoxin reductase.
    Nikkanen L; Guinea Diaz M; Toivola J; Tiwari A; Rintamäki E
    Physiol Plant; 2019 May; 166(1):211-225. PubMed ID: 30578537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer modeling of electron and proton transport in chloroplasts.
    Tikhonov AN; Vershubskii AV
    Biosystems; 2014 Jul; 121():1-21. PubMed ID: 24835748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PGR5-dependent cyclic electron transport around PSI contributes to the redox homeostasis in chloroplasts rather than CO(2) fixation and biomass production in rice.
    Nishikawa Y; Yamamoto H; Okegawa Y; Wada S; Sato N; Taira Y; Sugimoto K; Makino A; Shikanai T
    Plant Cell Physiol; 2012 Dec; 53(12):2117-26. PubMed ID: 23161858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of Cyclic and Pseudo-cyclic Electron Transport to the Formation of Proton Motive Force in Chloroplasts.
    Shikanai T; Yamamoto H
    Mol Plant; 2017 Jan; 10(1):20-29. PubMed ID: 27575692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photosynthetic activity in winter needles of the evergreen tree Taxus cuspidata at low temperatures.
    Tanaka A
    Tree Physiol; 2007 May; 27(5):641-8. PubMed ID: 17267355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How Light Reactions of Photosynthesis in C4 Plants Are Optimized and Protected under High Light Conditions.
    Wasilewska-Dębowska W; Zienkiewicz M; Drozak A
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35408985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.