These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 32700724)
1. A data-driven computational scheme for the nonlinear mechanical properties of cellular mechanical metamaterials under large deformation. Xue T; Beatson A; Chiaramonte M; Roeder G; Ash JT; Menguc Y; Adriaenssens S; Adams RP; Mao S Soft Matter; 2020 Aug; 16(32):7524-7534. PubMed ID: 32700724 [TBL] [Abstract][Full Text] [Related]
2. The non-affine fiber network solver: A multiscale fiber network material model for finite-element analysis. Mahutga RR; Barocas VH; Alford PW J Mech Behav Biomed Mater; 2023 Aug; 144():105967. PubMed ID: 37329673 [TBL] [Abstract][Full Text] [Related]
3. Computational modeling of chemo-electro-mechanical coupling: a novel implicit monolithic finite element approach. Wong J; Göktepe S; Kuhl E Int J Numer Method Biomed Eng; 2013 Oct; 29(10):1104-33. PubMed ID: 23798328 [TBL] [Abstract][Full Text] [Related]
4. Fast and accurate nonlinear hyper-elastic deformation with a posteriori numerical verification of the convergence of solution: Application to the simulation of liver deformation. Saidi F; Malti A Int J Numer Method Biomed Eng; 2021 May; 37(5):e3444. PubMed ID: 33606358 [TBL] [Abstract][Full Text] [Related]
5. Numerical simulation of deformed red blood cell by utilizing neural network approach and finite element analysis. Wang Y; Sang J; Ao R; Ma Y; Fu B Comput Methods Biomech Biomed Engin; 2020 Nov; 23(15):1190-1200. PubMed ID: 32772860 [TBL] [Abstract][Full Text] [Related]
6. A novel machine learning based computational framework for homogenization of heterogeneous soft materials: application to liver tissue. Hashemi MS; Baniassadi M; Baghani M; George D; Remond Y; Sheidaei A Biomech Model Mechanobiol; 2020 Jun; 19(3):1131-1142. PubMed ID: 31823106 [TBL] [Abstract][Full Text] [Related]
7. Implementation and validation of finite element model of skull deformation and failure response during uniaxial compression. Alexander SL; Weerasooriya T J Mech Behav Biomed Mater; 2021 Mar; 115():104302. PubMed ID: 33476873 [TBL] [Abstract][Full Text] [Related]
8. The Effect of Hole Geometry on the Nonlinear Nanomechanics of Georgantzinos SK; Siampanis SG; Rogkas N; Spitas V Int J Mol Sci; 2023 Sep; 24(19):. PubMed ID: 37833972 [TBL] [Abstract][Full Text] [Related]
9. Determination of the mechanical and physical properties of cartilage by coupling poroelastic-based finite element models of indentation with artificial neural networks. Arbabi V; Pouran B; Campoli G; Weinans H; Zadpoor AA J Biomech; 2016 Mar; 49(5):631-637. PubMed ID: 26944689 [TBL] [Abstract][Full Text] [Related]
10. A three-scale finite element investigation into the effects of tissue mineralisation and lamellar organisation in human cortical and trabecular bone. Vaughan TJ; McCarthy CT; McNamara LM J Mech Behav Biomed Mater; 2012 Aug; 12():50-62. PubMed ID: 22659366 [TBL] [Abstract][Full Text] [Related]
11. A Stochastic FE Lu X; Yvonnet J; Papadopoulos L; Kalogeris I; Papadopoulos V Materials (Basel); 2021 May; 14(11):. PubMed ID: 34072054 [TBL] [Abstract][Full Text] [Related]
12. Simulation of the inelastic deformation of porous reservoirs under cyclic loading relevant for underground hydrogen storage. Kumar KR; Honorio HT; Hajibeygi H Sci Rep; 2022 Dec; 12(1):21404. PubMed ID: 36496507 [TBL] [Abstract][Full Text] [Related]
13. Multiscale methodology for bone remodelling simulation using coupled finite element and neural network computation. Hambli R; Katerchi H; Benhamou CL Biomech Model Mechanobiol; 2011 Feb; 10(1):133-45. PubMed ID: 20506032 [TBL] [Abstract][Full Text] [Related]
14. Suite of meshless algorithms for accurate computation of soft tissue deformation for surgical simulation. Joldes G; Bourantas G; Zwick B; Chowdhury H; Wittek A; Agrawal S; Mountris K; Hyde D; Warfield SK; Miller K Med Image Anal; 2019 Aug; 56():152-171. PubMed ID: 31229760 [TBL] [Abstract][Full Text] [Related]
15. Tuning the Performance of Metallic Auxetic Metamaterials by Using Buckling and Plasticity. Ghaedizadeh A; Shen J; Ren X; Xie YM Materials (Basel); 2016 Jan; 9(1):. PubMed ID: 28787854 [TBL] [Abstract][Full Text] [Related]
16. GPU-based acceleration of computations in nonlinear finite element deformation analysis. Mafi R; Sirouspour S Int J Numer Method Biomed Eng; 2014 Mar; 30(3):365-81. PubMed ID: 24166875 [TBL] [Abstract][Full Text] [Related]
17. A computational framework for biomaterials containing three-dimensional random fiber networks based on the affine kinematics. Jin T Biomech Model Mechanobiol; 2022 Apr; 21(2):685-708. PubMed ID: 35084592 [TBL] [Abstract][Full Text] [Related]
18. Constitutive model of brain tissue suitable for finite element analysis of surgical procedures. Miller K J Biomech; 1999 May; 32(5):531-7. PubMed ID: 10327007 [TBL] [Abstract][Full Text] [Related]
19. Equivalent deformation modulus of sandy pebble soil-Mathematical derivation and numerical simulation. Huang JZ; Xu GY; Wang Y; Ouyang XW Math Biosci Eng; 2019 Mar; 16(4):2756-2774. PubMed ID: 31137236 [TBL] [Abstract][Full Text] [Related]
20. A mechanistic insight into the mechanical role of the stratum corneum during stretching and compression of the skin. Leyva-Mendivil MF; Page A; Bressloff NW; Limbert G J Mech Behav Biomed Mater; 2015 Sep; 49():197-219. PubMed ID: 26042766 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]