These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 32701100)

  • 21. Subnanometer Control of Mean Core Size during Mesofluidic Synthesis of Small (D(core) < 10 nm) Water-Soluble, Ligand-Stabilized Gold Nanoparticles.
    Elliott EW; Haben PM; Hutchison JE
    Langmuir; 2015 Nov; 31(43):11886-94. PubMed ID: 26436612
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nucleation of crystals from solution: classical and two-step models.
    Erdemir D; Lee AY; Myerson AS
    Acc Chem Res; 2009 May; 42(5):621-9. PubMed ID: 19402623
    [TBL] [Abstract][Full Text] [Related]  

  • 23. One-Pot Seed-Mediated Growth of Co Nanoparticles by the Polyol Process: Unraveling the Heterogeneous Nucleation.
    Ramamoorthy RK; Viola A; Grindi B; Peron J; Gatel C; Hytch M; Arenal R; Sicard L; Giraud M; Piquemal JY; Viau G
    Nano Lett; 2019 Dec; 19(12):9160-9169. PubMed ID: 31756108
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis of stabilizer-free gold nanoparticles by pulse sonoelectrochemical method.
    Shen Q; Min Q; Shi J; Jiang L; Hou W; Zhu JJ
    Ultrason Sonochem; 2011 Jan; 18(1):231-7. PubMed ID: 20579926
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rapid synthesis of highly monodisperse Au(x)Ag(1-x) alloy nanoparticles via a half-seeding approach.
    Chng TT; Polavarapu L; Xu QH; Ji W; Zeng HC
    Langmuir; 2011 May; 27(9):5633-43. PubMed ID: 21462957
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Resolving heterogeneous particle mobility in deeply quenched liquid iron: an ultra-fast assembly-free two-step nucleation mechanism.
    Süle P
    Phys Chem Chem Phys; 2024 Oct; 26(40):26091-26108. PubMed ID: 39377916
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gold nanoparticle superlattice crystallization probed in situ.
    Abécassis B; Testard F; Spalla O
    Phys Rev Lett; 2008 Mar; 100(11):115504. PubMed ID: 18517795
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Antibacterial activity of Ag-Au alloy NPs and chemical sensor property of Au NPs synthesized by dextran.
    Bankura K; Maity D; Mollick MM; Mondal D; Bhowmick B; Roy I; Midya T; Sarkar J; Rana D; Acharya K; Chattopadhyay D
    Carbohydr Polym; 2014 Jul; 107():151-7. PubMed ID: 24702930
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On a role of liquid intermediates in nucleation of gold sulfide nanoparticles in aqueous media.
    Likhatski M; Karacharov A; Kondrasenko A; Mikhlin Y
    Faraday Discuss; 2015; 179():235-45. PubMed ID: 25896171
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Self-Confined Nucleation of Iron Oxide Nanoparticles in a Nanostructured Amorphous Precursor.
    Baumgartner J; Ramamoorthy RK; Freitas AP; Neouze MA; Bennet M; Faivre D; Carriere D
    Nano Lett; 2020 Jul; 20(7):5001-5007. PubMed ID: 32551668
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of the environment in the stability of anisotropic gold particles.
    Cortes-Huerto R; Goniakowski J; Noguera C
    Phys Chem Chem Phys; 2015 Mar; 17(9):6305-13. PubMed ID: 25648545
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A tri-block copolymer templated synthesis of gold nanostructures.
    Falletta E; Ridi F; Fratini E; Vannucci C; Canton P; Bianchi S; Castelvetro V; Baglioni P
    J Colloid Interface Sci; 2011 May; 357(1):88-94. PubMed ID: 21334634
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Understanding of the size control of biocompatible gold nanoparticles in millifluidic channels.
    Jun H; Fabienne T; Florent M; Coulon PE; Nicolas M; Olivier S
    Langmuir; 2012 Nov; 28(45):15966-74. PubMed ID: 23116539
    [TBL] [Abstract][Full Text] [Related]  

  • 34. α-Helical Peptide-Gold Nanoparticle Hybrids: Synthesis, Characterization, and Catalytic Activity.
    Tomizaki KY; Yamaguchi Y; Tsukamoto N; Imai T
    Protein Pept Lett; 2018; 25(1):56-63. PubMed ID: 29237364
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Methionine-Controlled Impediment of Secondary Nucleation Leading to Nonclassical Growth within Self-Assembled
    Sahu JK; Lone SA; Sadhu KK
    Langmuir; 2022 May; 38(18):5865-5873. PubMed ID: 35442695
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multifunctional two-photon active silica-coated Au@MnO Janus particles for selective dual functionalization and imaging.
    Schick I; Lorenz S; Gehrig D; Schilmann AM; Bauer H; Panthöfer M; Fischer K; Strand D; Laquai F; Tremel W
    J Am Chem Soc; 2014 Feb; 136(6):2473-83. PubMed ID: 24460244
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Theoretical and experimental insights into the origin of the catalytic activity of subnanometric gold clusters: attempts to predict reactivity with clusters and nanoparticles of gold.
    Boronat M; Leyva-Pérez A; Corma A
    Acc Chem Res; 2014 Mar; 47(3):834-44. PubMed ID: 23750470
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled in situ XANES and SAXS evaluation.
    Polte J; Ahner TT; Delissen F; Sokolov S; Emmerling F; Thünemann AF; Kraehnert R
    J Am Chem Soc; 2010 Feb; 132(4):1296-301. PubMed ID: 20102229
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluating the mechanism of nucleation and growth of silver nanoparticles in a polymer membrane under continuous precursor supply: tuning of multiple to single nucleation pathway.
    Naik AN; Patra S; Sen D; Goswami A
    Phys Chem Chem Phys; 2019 Feb; 21(8):4193-4199. PubMed ID: 30734801
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Green synthesis of size controllable gold nanoparticles.
    Mohan Kumar K; Mandal BK; Kiran Kumar HA; Maddinedi SB
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Dec; 116():539-45. PubMed ID: 23973603
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.