BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32701170)

  • 1. Working with Randy: The Diacylglycerol Acyltransferase Story.
    Harwood JL
    Lipids; 2020 Sep; 55(5):419-423. PubMed ID: 32701170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus) to increase seed oil content.
    Weselake RJ; Shah S; Tang M; Quant PA; Snyder CL; Furukawa-Stoffer TL; Zhu W; Taylor DC; Zou J; Kumar A; Hall L; Laroche A; Rakow G; Raney P; Moloney MM; Harwood JL
    J Exp Bot; 2008; 59(13):3543-9. PubMed ID: 18703491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using lipidomics to reveal details of lipid accumulation in developing seeds from oilseed rape (Brassica napus L.).
    Woodfield HK; Cazenave-Gassiot A; Haslam RP; Guschina IA; Wenk MR; Harwood JL
    Biochim Biophys Acta Mol Cell Biol Lipids; 2018 Mar; 1863(3):339-348. PubMed ID: 29275220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Type 1 diacylglycerol acyltransferases of Brassica napus preferentially incorporate oleic acid into triacylglycerol.
    Aznar-Moreno J; Denolf P; Van Audenhove K; De Bodt S; Engelen S; Fahy D; Wallis JG; Browse J
    J Exp Bot; 2015 Oct; 66(20):6497-506. PubMed ID: 26195728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directed evolution of acyl-CoA:diacylglycerol acyltransferase: development and characterization of Brassica napus DGAT1 mutagenized libraries.
    Siloto RM; Truksa M; Brownfield D; Good AG; Weselake RJ
    Plant Physiol Biochem; 2009 Jun; 47(6):456-61. PubMed ID: 19195902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transgenic manipulation of triacylglycerol biosynthetic enzymes in B. napus alters lipid-associated gene expression and lipid metabolism.
    Liao P; Lechon T; Romsdahl T; Woodfield H; Fenyk S; Fawcett T; Wallington E; Bates RE; Chye ML; Chapman KD; Harwood JL; Scofield S
    Sci Rep; 2022 Mar; 12(1):3352. PubMed ID: 35233071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and characterization of an efficient acyl-CoA: diacylglycerol acyltransferase 1 (DGAT1) gene from the microalga Chlorella ellipsoidea.
    Guo X; Fan C; Chen Y; Wang J; Yin W; Wang RR; Hu Z
    BMC Plant Biol; 2017 Feb; 17(1):48. PubMed ID: 28222675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two Clades of Type-1 Brassica napus Diacylglycerol Acyltransferase Exhibit Differences in Acyl-CoA Preference.
    Greer MS; Pan X; Weselake RJ
    Lipids; 2016 Jun; 51(6):781-6. PubMed ID: 27138895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isoforms of Acyl-CoA:Diacylglycerol Acyltransferase2 Differ Substantially in Their Specificities toward Erucic Acid.
    Demski K; Jeppson S; Lager I; Misztak A; Jasieniecka-Gazarkiewicz K; Waleron M; Stymne S; Banaƛ A
    Plant Physiol; 2019 Dec; 181(4):1468-1479. PubMed ID: 31619508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overexpression of phospholipid: diacylglycerol acyltransferase in Brassica napus results in changes in lipid metabolism and oil accumulation.
    Fenyk S; Woodfield HK; Romsdahl TB; Wallington EJ; Bates RE; Fell DA; Chapman KD; Fawcett T; Harwood JL
    Biochem J; 2022 Mar; 479(6):805-823. PubMed ID: 35298586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide analysis and functional characterization of Acyl-CoA:diacylglycerol acyltransferase from soybean identify GmDGAT1A and 1B roles in oil synthesis in Arabidopsis seeds.
    Zhao J; Bi R; Li S; Zhou D; Bai Y; Jing G; Zhang K; Zhang W
    J Plant Physiol; 2019 Nov; 242():153019. PubMed ID: 31437808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antisense suppression of type 1 diacylglycerol acyltransferase adversely affects plant development in Brassica napus.
    Lock YY; Snyder CL; Zhu W; Siloto RM; Weselake RJ; Shah S
    Physiol Plant; 2009 Sep; 137(1):61-71. PubMed ID: 19602173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties and Biotechnological Applications of Acyl-CoA:diacylglycerol Acyltransferase and Phospholipid:diacylglycerol Acyltransferase from Terrestrial Plants and Microalgae.
    Xu Y; Caldo KMP; Pal-Nath D; Ozga J; Lemieux MJ; Weselake RJ; Chen G
    Lipids; 2018 Jul; 53(7):663-688. PubMed ID: 30252128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diacylglycerol acyltransferase 1 is activated by phosphatidate and inhibited by SnRK1-catalyzed phosphorylation.
    Caldo KMP; Shen W; Xu Y; Hanley-Bowdoin L; Chen G; Weselake RJ; Lemieux MJ
    Plant J; 2018 Oct; 96(2):287-299. PubMed ID: 30003607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two novel diacylglycerol acyltransferase genes from Xanthoceras sorbifolia are responsible for its seed oil content.
    Guo HH; Wang TT; Li QQ; Zhao N; Zhang Y; Liu D; Hu Q; Li FL
    Gene; 2013 Sep; 527(1):266-74. PubMed ID: 23769928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple mechanisms contribute to increased neutral lipid accumulation in yeast producing recombinant variants of plant diacylglycerol acyltransferase 1.
    Xu Y; Chen G; Greer MS; Caldo KMP; Ramakrishnan G; Shah S; Wu L; Lemieux MJ; Ozga J; Weselake RJ
    J Biol Chem; 2017 Oct; 292(43):17819-17831. PubMed ID: 28900030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Vernonia Diacylglycerol Acyltransferase Can Increase Renewable Oil Production.
    Hatanaka T; Serson W; Li R; Armstrong P; Yu K; Pfeiffer T; Li XL; Hildebrand D
    J Agric Food Chem; 2016 Sep; 64(38):7188-94. PubMed ID: 27578203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Improved Variant of Soybean Type 1 Diacylglycerol Acyltransferase Increases the Oil Content and Decreases the Soluble Carbohydrate Content of Soybeans.
    Roesler K; Shen B; Bermudez E; Li C; Hunt J; Damude HG; Ripp KG; Everard JD; Booth JR; Castaneda L; Feng L; Meyer K
    Plant Physiol; 2016 Jun; 171(2):878-93. PubMed ID: 27208257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic control analysis of developing oilseed rape (Brassica napus cv Westar) embryos shows that lipid assembly exerts significant control over oil accumulation.
    Tang M; Guschina IA; O'Hara P; Slabas AR; Quant PA; Fawcett T; Harwood JL
    New Phytol; 2012 Oct; 196(2):414-426. PubMed ID: 22901003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling lipid accumulation in cereal grains.
    Barthole G; Lepiniec L; Rogowsky PM; Baud S
    Plant Sci; 2012 Apr; 185-186():33-9. PubMed ID: 22325864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.