BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 32701181)

  • 1. Identification of Amino Acid Residues Responsible for C-H Activation in Type-III Copper Enzymes by Generating Tyrosinase Activity in a Catechol Oxidase.
    Kampatsikas I; Pretzler M; Rompel A
    Angew Chem Int Ed Engl; 2020 Nov; 59(47):20940-20945. PubMed ID: 32701181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aurone synthase is a catechol oxidase with hydroxylase activity and provides insights into the mechanism of plant polyphenol oxidases.
    Molitor C; Mauracher SG; Rompel A
    Proc Natl Acad Sci U S A; 2016 Mar; 113(13):E1806-15. PubMed ID: 26976571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Similar but Still Different: Which Amino Acid Residues Are Responsible for Varying Activities in Type-III Copper Enzymes?
    Kampatsikas I; Rompel A
    Chembiochem; 2021 Apr; 22(7):1161-1175. PubMed ID: 33108057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conversion of walnut tyrosinase into a catechol oxidase by site directed mutagenesis.
    Panis F; Kampatsikas I; Bijelic A; Rompel A
    Sci Rep; 2020 Feb; 10(1):1659. PubMed ID: 32015350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A pluripotent polyphenol oxidase from the melanogenic marine Alteromonas sp shares catalytic capabilities of tyrosinases and laccases.
    Sanchez-Amat A; Solano F
    Biochem Biophys Res Commun; 1997 Nov; 240(3):787-92. PubMed ID: 9398646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tyrosinase versus Catechol Oxidase: One Asparagine Makes the Difference.
    Solem E; Tuczek F; Decker H
    Angew Chem Int Ed Engl; 2016 Feb; 55(8):2884-8. PubMed ID: 26773413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unraveling Substrate Specificity and Catalytic Promiscuity of Aspergillus oryzae Catechol Oxidase.
    Penttinen L; Rutanen C; Jänis J; Rouvinen J; Hakulinen N
    Chembiochem; 2018 Nov; 19(22):2348-2352. PubMed ID: 30204291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catechol Oxidase versus Tyrosinase Classification Revisited by Site-Directed Mutagenesis Studies.
    Prexler SM; Frassek M; Moerschbacher BM; Dirks-Hofmeister ME
    Angew Chem Int Ed Engl; 2019 Jun; 58(26):8757-8761. PubMed ID: 31037807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tyrosinase/catecholoxidase activity of hemocyanins: structural basis and molecular mechanism.
    Decker H; Tuczek F
    Trends Biochem Sci; 2000 Aug; 25(8):392-7. PubMed ID: 10916160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-directed mutagenesis around the CuA site of a polyphenol oxidase from Coreopsis grandiflora (cgAUS1).
    Kaintz C; Mayer RL; Jirsa F; Halbwirth H; Rompel A
    FEBS Lett; 2015 Mar; 589(7):789-97. PubMed ID: 25697959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural insights into dioxygen-activating copper enzymes.
    Rosenzweig AC; Sazinsky MH
    Curr Opin Struct Biol; 2006 Dec; 16(6):729-35. PubMed ID: 17011183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In crystallo activity tests with latent apple tyrosinase and two mutants reveal the importance of the mutated sites for polyphenol oxidase activity.
    Kampatsikas I; Bijelic A; Pretzler M; Rompel A
    Acta Crystallogr F Struct Biol Commun; 2017 Aug; 73(Pt 8):491-499. PubMed ID: 28777094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of the amino acid position controlling the different enzymatic activities in walnut tyrosinase isoenzymes (jrPPO1 and jrPPO2).
    Panis F; Rompel A
    Sci Rep; 2020 Jul; 10(1):10813. PubMed ID: 32616720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origin, evolution and classification of type-3 copper proteins: lineage-specific gene expansions and losses across the Metazoa.
    Aguilera F; McDougall C; Degnan BM
    BMC Evol Biol; 2013 May; 13():96. PubMed ID: 23634722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tyrosinase and catechol oxidase activity of copper(I) complexes supported by imidazole-based ligands: structure-reactivity correlations.
    Wendt F; Näther C; Tuczek F
    J Biol Inorg Chem; 2016 Sep; 21(5-6):777-92. PubMed ID: 27333775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influencing the monophenolase/diphenolase activity ratio in tyrosinase.
    Goldfeder M; Kanteev M; Adir N; Fishman A
    Biochim Biophys Acta; 2013 Mar; 1834(3):629-33. PubMed ID: 23305929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Type-3 copper proteins: recent advances on polyphenol oxidases.
    Kaintz C; Mauracher SG; Rompel A
    Adv Protein Chem Struct Biol; 2014; 97():1-35. PubMed ID: 25458353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification and spectroscopic studies on catechol oxidases from Lycopus europaeus and Populus nigra: evidence for a dinuclear copper center of type 3 and spectroscopic similarities to tyrosinase and hemocyanin.
    Rompel A; Fischer H; Meiwes D; Büldt-Karentzopoulos K; Dillinger R; Tuczek F; Witzel H; Krebs B
    J Biol Inorg Chem; 1999 Feb; 4(1):56-63. PubMed ID: 10499103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three recombinantly expressed apple tyrosinases suggest the amino acids responsible for mono- versus diphenolase activity in plant polyphenol oxidases.
    Kampatsikas I; Bijelic A; Pretzler M; Rompel A
    Sci Rep; 2017 Aug; 7(1):8860. PubMed ID: 28821733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling tyrosinase and catecholase activity using new m-Xylyl-based ligands with bidentate alkylamine terminal coordination.
    Mandal S; Mukherjee J; Lloret F; Mukherjee R
    Inorg Chem; 2012 Dec; 51(24):13148-61. PubMed ID: 23194383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.