BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 32701181)

  • 41. Experimental and bioinformatic investigation of the proteolytic degradation of the C-terminal domain of a fungal tyrosinase.
    Faccio G; Arvas M; Thöny-Meyer L; Saloheimo M
    J Inorg Biochem; 2013 Apr; 121():37-45. PubMed ID: 23333757
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The crystal structure of an extracellular catechol oxidase from the ascomycete fungus Aspergillus oryzae.
    Hakulinen N; Gasparetti C; Kaljunen H; Kruus K; Rouvinen J
    J Biol Inorg Chem; 2013 Dec; 18(8):917-29. PubMed ID: 24043469
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Tyrosinase-oxidoreductase; monophenol, o-diphenol: O2].
    Porebska-Budny M; Dworzański JP
    Postepy Biochem; 1988; 34(4):375-94. PubMed ID: 3152013
    [No Abstract]   [Full Text] [Related]  

  • 44. Crystallization and preliminary crystallographic analysis of latent, active and recombinantly expressed aurone synthase, a polyphenol oxidase, from Coreopsis grandiflora.
    Molitor C; Mauracher SG; Rompel A
    Acta Crystallogr F Struct Biol Commun; 2015 Jun; 71(Pt 6):746-51. PubMed ID: 26057806
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The catalytic effect of tyrosinase upon oxidation of 2-hydroxyestradiol in presence of catechol.
    Jacobsohn GM; Jacobsohn MK
    Arch Biochem Biophys; 1984 Jul; 232(1):189-96. PubMed ID: 6430238
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Polyphenol oxidase activity expression in Ralstonia solanacearum.
    Hernández-Romero D; Solano F; Sanchez-Amat A
    Appl Environ Microbiol; 2005 Nov; 71(11):6808-15. PubMed ID: 16269713
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Scaffolded amino acids as a close structural mimic of type-3 copper binding sites.
    Albada HB; Soulimani F; Weckhuysen BM; Liskamp RM
    Chem Commun (Camb); 2007 Dec; (46):4895-7. PubMed ID: 18361361
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification of active site residues involved in metal cofactor binding and stereospecific substrate recognition in Mammalian tyrosinase. Implications to the catalytic cycle.
    Olivares C; García-Borrón JC; Solano F
    Biochemistry; 2002 Jan; 41(2):679-86. PubMed ID: 11781109
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanistic implications of variable stoichiometries of oxygen consumption during tyrosinase catalyzed oxidation of monophenols and o-diphenols.
    Peñalver MJ; Hiner AN; Rodríguez-López JN; García-Cánovas F; Tudela J
    Biochim Biophys Acta; 2002 May; 1597(1):140-8. PubMed ID: 12009413
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular anatomy of tyrosinase and its related proteins: beyond the histidine-bound metal catalytic center.
    García-Borrón JC; Solano F
    Pigment Cell Res; 2002 Jun; 15(3):162-73. PubMed ID: 12028580
    [TBL] [Abstract][Full Text] [Related]  

  • 51. New mechanistic insights into coupled binuclear copper monooxygenases from the recent elucidation of the ternary intermediate of tyrosinase.
    Kipouros I; Solomon EI
    FEBS Lett; 2023 Jan; 597(1):65-78. PubMed ID: 36178078
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Neurospora tyrosinase: structural, spectroscopic and catalytic properties.
    Lerch K
    Mol Cell Biochem; 1983; 52(2):125-38. PubMed ID: 6308414
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The influence of catechol structure on the suicide-inactivation of tyrosinase.
    Ramsden CA; Stratford MR; Riley PA
    Org Biomol Chem; 2009 Sep; 7(17):3388-90. PubMed ID: 19675891
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Oxidation of 3,4-dihydroxymandelic acid catalyzed by tyrosinase.
    Martínez Ortiz F; Tudela Serrano J; Rodríguez López JN; Varón Castellanos R; Lozano Teruel JA; García-Cánovas F
    Biochim Biophys Acta; 1988 Nov; 957(1):158-63. PubMed ID: 2846069
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Chemical and enzymic oxidation by tyrosinase of 3,4-dihydroxymandelate.
    Cabanes J; Sanchez-Ferrer A; Bru R; García-Carmona F
    Biochem J; 1988 Dec; 256(2):681-4. PubMed ID: 3146978
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Discovery of a new tyrosinase-like enzyme family lacking a C-terminally processed domain: production and characterization of an Aspergillus oryzae catechol oxidase.
    Gasparetti C; Faccio G; Arvas M; Buchert J; Saloheimo M; Kruus K
    Appl Microbiol Biotechnol; 2010 Mar; 86(1):213-26. PubMed ID: 19798497
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Copper-O2 reactivity of tyrosinase models towards external monophenolic substrates: molecular mechanism and comparison with the enzyme.
    Rolff M; Schottenheim J; Decker H; Tuczek F
    Chem Soc Rev; 2011 Jul; 40(7):4077-98. PubMed ID: 21416076
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A tyrosinase, mTyr-CNK, that is functionally available as a monophenol monooxygenase.
    Do H; Kang E; Yang B; Cha HJ; Choi YS
    Sci Rep; 2017 Dec; 7(1):17267. PubMed ID: 29222480
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Switch between tyrosinase and catecholoxidase activity of scorpion hemocyanin by allosteric effectors.
    Nillius D; Jaenicke E; Decker H
    FEBS Lett; 2008 Mar; 582(5):749-54. PubMed ID: 18258201
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Considerations Regarding Activity Determinants of Fungal Polyphenol Oxidases Based on Mutational and Structural Studies.
    Nikolaivits E; Valmas A; Dedes G; Topakas E; Dimarogona M
    Appl Environ Microbiol; 2021 May; 87(11):. PubMed ID: 33741634
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.