These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 32701183)

  • 41. Microdroplet-Facilitated Assembly of Thermally Activated Delayed Fluorescence-Encoded Microparticles with Non-interfering Color Signals.
    Shen Y; Yuan L; Wu G; Yuan W; Cheng Z; Yan J; Zhang J; Tao Y; Yu Z
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):591-598. PubMed ID: 36542734
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A three-dimensional ratiometric sensing strategy on unimolecular fluorescence-thermally activated delayed fluorescence dual emission.
    Li X; Baryshnikov G; Deng C; Bao X; Wu B; Zhou Y; Ågren H; Zhu L
    Nat Commun; 2019 Feb; 10(1):731. PubMed ID: 30760723
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Highly Efficient Thermally Activated Delayed Fluorescence from an Excited-State Intramolecular Proton Transfer System.
    Mamada M; Inada K; Komino T; Potscavage WJ; Nakanotani H; Adachi C
    ACS Cent Sci; 2017 Jul; 3(7):769-777. PubMed ID: 28776019
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dual fluorescence through Kasha's rule breaking: an unconventional photomechanism for intracellular probe design.
    Brancato G; Signore G; Neyroz P; Polli D; Cerullo G; Abbandonato G; Nucara L; Barone V; Beltram F; Bizzarri R
    J Phys Chem B; 2015 May; 119(20):6144-54. PubMed ID: 25902266
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Solid-state, ambient-operation thermally activated delayed fluorescence from flexible, non-toxic gold-nanocluster thin films: towards the development of biocompatible light-emitting devices.
    Talite MJ; Lin HT; Jiang ZC; Lin TN; Huang HY; Heredia E; Flores A; Chao YC; Shen JL; Lin CA; Yuan CT
    Nanotechnology; 2016 Aug; 27(34):345701. PubMed ID: 27405350
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Copper(I) Complexes for Thermally Activated Delayed Fluorescence: From Photophysical to Device Properties.
    Leitl MJ; Zink DM; Schinabeck A; Baumann T; Volz D; Yersin H
    Top Curr Chem (Cham); 2016 Jun; 374(3):25. PubMed ID: 27573265
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Color-Tunable Thermally Activated Delayed Fluorescence in Oxadiazole-Based Acrylic Copolymers: Photophysical Properties and Applications in Ratiometric Oxygen Sensing.
    Tonge CM; Paisley NR; Polgar AM; Lix K; Algar WR; Hudson ZM
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):6525-6535. PubMed ID: 31989816
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dual fluorescence sensor for trace oxygen and temperature with unmatched range and sensitivity.
    Baleizão C; Nagl S; Schäferling M; Berberan-Santos MN; Wolfbeis OS
    Anal Chem; 2008 Aug; 80(16):6449-57. PubMed ID: 18651755
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pyrazine-Based Blue Thermally Activated Delayed Fluorescence Materials: Combine Small Singlet-Triplet Splitting With Large Fluorescence Rate.
    Liu J; Zhou K; Wang D; Deng C; Duan K; Ai Q; Zhang Q
    Front Chem; 2019; 7():312. PubMed ID: 31165054
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A New Design Strategy for Efficient Thermally Activated Delayed Fluorescence Organic Emitters: From Twisted to Planar Structures.
    Chen XK; Tsuchiya Y; Ishikawa Y; Zhong C; Adachi C; Brédas JL
    Adv Mater; 2017 Dec; 29(46):. PubMed ID: 29044726
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cell-Penetrating Peptides Transport Noncovalently Linked Thermally Activated Delayed Fluorescence Nanoparticles for Time-Resolved Luminescence Imaging.
    Zhu Z; Tian D; Gao P; Wang K; Li Y; Shu X; Zhu J; Zhao Q
    J Am Chem Soc; 2018 Dec; 140(50):17484-17491. PubMed ID: 30525541
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Thermally Activated Delayed Fluorescence Materials: Towards Realization of High Efficiency through Strategic Small Molecular Design.
    Liang X; Tu ZL; Zheng YX
    Chemistry; 2019 Apr; 25(22):5623-5642. PubMed ID: 30648301
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Trap-Controlled White Electroluminescence From a Single Red-Emitting Thermally Activated Delayed Fluorescence Polymer.
    Yang Y; Yang L; Li X; Zhao L; Wang S; Ding J; Wang L
    Front Chem; 2020; 8():287. PubMed ID: 32373586
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Manipulating the Electronic Excited State Energies of Pyrimidine-Based Thermally Activated Delayed Fluorescence Emitters To Realize Efficient Deep-Blue Emission.
    Komatsu R; Ohsawa T; Sasabe H; Nakao K; Hayasaka Y; Kido J
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4742-4749. PubMed ID: 28121118
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Observation of Nonradiative Deactivation Behavior from Singlet and Triplet States of Thermally Activated Delayed Fluorescence Emitters in Solution.
    Notsuka N; Nakanotani H; Noda H; Goushi K; Adachi C
    J Phys Chem Lett; 2020 Jan; 11(2):562-566. PubMed ID: 31887042
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Highly Efficient and Color-Stable Thermally Activated Delayed Fluorescence White Light-Emitting Diodes Featured with Single-Doped Single Emissive Layers.
    Ding D; Wang Z; Li C; Zhang J; Duan C; Wei Y; Xu H
    Adv Mater; 2020 Mar; 32(10):e1906950. PubMed ID: 31990429
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Highly Luminescent Pincer Gold(III) Aryl Emitters: Thermally Activated Delayed Fluorescence and Solution-Processed OLEDs.
    To WP; Zhou D; Tong GSM; Cheng G; Yang C; Che CM
    Angew Chem Int Ed Engl; 2017 Nov; 56(45):14036-14041. PubMed ID: 28865082
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Control of Dual Conformations: Developing Thermally Activated Delayed Fluorescence Emitters for Highly Efficient Single-Emitter White Organic Light-Emitting Diodes.
    Wang K; Shi YZ; Zheng CJ; Liu W; Liang K; Li X; Zhang M; Lin H; Tao SL; Lee CS; Ou XM; Zhang XH
    ACS Appl Mater Interfaces; 2018 Sep; 10(37):31515-31525. PubMed ID: 30132326
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Aggregation-Induced Delayed Fluorescence Based on Donor/Acceptor-Tethered Janus Carborane Triads: Unique Photophysical Properties of Nondoped OLEDs.
    Furue R; Nishimoto T; Park IS; Lee J; Yasuda T
    Angew Chem Int Ed Engl; 2016 Jun; 55(25):7171-5. PubMed ID: 27145481
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Exciplex Formation and Electromer Blocking for Highly Efficient Blue Thermally Activated Delayed Fluorescence OLEDs with All-Solution-Processed Organic Layers.
    Ban X; Chen F; Pan J; Liu Y; Zhu A; Jiang W; Sun Y
    Chemistry; 2020 Mar; 26(14):3090-3102. PubMed ID: 31837285
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.