These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 32701344)

  • 21. Dissipation Mechanisms and Superlubricity in Solid Lubrication by Wet-Transferred Solution-Processed Graphene Flakes: Implications for Micro Electromechanical Devices.
    Buzio R; Gerbi A; Bernini C; Repetto L; Silva A; Vanossi A
    ACS Appl Nano Mater; 2023 Jul; 6(13):11443-11454. PubMed ID: 37469503
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sliding Friction and Superlubricity of Colloidal AFM Probes Coated by Tribo-Induced Graphitic Transfer Layers.
    Buzio R; Gerbi A; Bernini C; Repetto L; Vanossi A
    Langmuir; 2022 Oct; 38(41):12570-12580. PubMed ID: 36190908
    [TBL] [Abstract][Full Text] [Related]  

  • 23. UItra-low friction and edge-pinning effect in large-lattice-mismatch van der Waals heterostructures.
    Liao M; Nicolini P; Du L; Yuan J; Wang S; Yu H; Tang J; Cheng P; Watanabe K; Taniguchi T; Gu L; Claerbout VEP; Silva A; Kramer D; Polcar T; Yang R; Shi D; Zhang G
    Nat Mater; 2022 Jan; 21(1):47-53. PubMed ID: 34354215
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fully automatic transfer and measurement system for structural superlubric materials.
    Chen L; Lin C; Shi D; Huang X; Zheng Q; Nie J; Ma M
    Nat Commun; 2023 Oct; 14(1):6323. PubMed ID: 37816725
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Robust Superlubricity and MoirĂ© Lattice's Size Dependence on Friction between Graphdiyne Layers.
    Ruan X; Shi J; Wang X; Wang WY; Fan X; Zhou F
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40901-40908. PubMed ID: 34404203
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural superlubricity in graphite flakes assembled under ambient conditions.
    Deng H; Ma M; Song Y; He Q; Zheng Q
    Nanoscale; 2018 Jul; 10(29):14314-14320. PubMed ID: 30019038
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Superlubricity of Materials: Progress, Potential, and Challenges.
    Ramezani M; Ripin ZM; Jiang CP; Pasang T
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512418
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Negative friction coefficient in microscale graphite/mica layered heterojunctions.
    Liu B; Wang J; Zhao S; Qu C; Liu Y; Ma L; Zhang Z; Liu K; Zheng Q; Ma M
    Sci Adv; 2020 Apr; 6(16):eaaz6787. PubMed ID: 32494618
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Superlubricity of Graphite Induced by Multiple Transferred Graphene Nanoflakes.
    Li J; Gao T; Luo J
    Adv Sci (Weinh); 2018 Mar; 5(3):1700616. PubMed ID: 29593965
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions.
    Zhang R; Ning Z; Zhang Y; Zheng Q; Chen Q; Xie H; Zhang Q; Qian W; Wei F
    Nat Nanotechnol; 2013 Dec; 8(12):912-6. PubMed ID: 24185944
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of Interlayer Bonding on Superlubric Sliding of Graphene Contacts: A Machine-Learning Potential Study.
    Ying P; Natan A; Hod O; Urbakh M
    ACS Nano; 2024 Apr; 18(14):10133-10141. PubMed ID: 38546136
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computational Prediction of Superlubric Layered Heterojunctions.
    Gao E; Wu B; Wang Y; Jia X; Ouyang W; Liu Z
    ACS Appl Mater Interfaces; 2021 Jul; 13(28):33600-33608. PubMed ID: 34213300
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Macroscale Superlubricity on Nanoscale Graphene MoirĂ© Structure-Assembled Surface via Counterface Hydrogen Modulation.
    Wang Y; Yang X; Liang H; Zhao J; Zhang J
    Adv Sci (Weinh); 2024 May; 11(19):e2309701. PubMed ID: 38483889
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sliding friction of graphene/hexagonal -boron nitride heterojunctions: a route to robust superlubricity.
    Mandelli D; Leven I; Hod O; Urbakh M
    Sci Rep; 2017 Sep; 7(1):10851. PubMed ID: 28883489
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Superlow Friction of Graphite Induced by the Self-Assembly of Sodium Dodecyl Sulfate Molecular Layers.
    Li J; Luo J
    Langmuir; 2017 Nov; 33(44):12596-12601. PubMed ID: 29037037
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular Origin of Superlubricity between Graphene and a Highly Hydrophobic Surface in Water.
    Li J; Cao W; Li J; Ma M; Luo J
    J Phys Chem Lett; 2019 Jun; 10(11):2978-2984. PubMed ID: 31094522
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural Superlubricity Based on Crystalline Materials.
    Song Y; Qu C; Ma M; Zheng Q
    Small; 2020 Apr; 16(15):e1903018. PubMed ID: 31670482
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Towards superlubricity in nanostructured surfaces: the role of van der Waals forces.
    Echeverrigaray FG; S de Mello SR; Leidens LM; H Maia da Costa ME; Alvarez F; Burgo TAL; Michels AF; Figueroa CA
    Phys Chem Chem Phys; 2018 Aug; 20(34):21949-21959. PubMed ID: 30091772
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of a superlubricity nanometer interface by Raman spectroscopy.
    Shi Y; Yang X; Liu B; Dong H; Zheng Q
    Nanotechnology; 2016 Aug; 27(32):325701. PubMed ID: 27348089
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interlayer Friction and Superlubricity in Single-Crystalline Contact Enabled by Two-Dimensional Flake-Wrapped Atomic Force Microscope Tips.
    Liu Y; Song A; Xu Z; Zong R; Zhang J; Yang W; Wang R; Hu Y; Luo J; Ma T
    ACS Nano; 2018 Aug; 12(8):7638-7646. PubMed ID: 30060665
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.