These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 32701344)

  • 41. Fluorination to enhance superlubricity performance between self-assembled monolayer and graphite in water.
    Li J; Cao W; Li J; Ma M
    J Colloid Interface Sci; 2021 Aug; 596():44-53. PubMed ID: 33826969
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Frictional transition from superlubric islands to pinned monolayers.
    Pierno M; Bruschi L; Mistura G; Paolicelli G; di Bona A; Valeri S; Guerra R; Vanossi A; Tosatti E
    Nat Nanotechnol; 2015 Aug; 10(8):714-8. PubMed ID: 26006001
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The high-speed sliding friction of graphene and novel routes to persistent superlubricity.
    Liu Y; Grey F; Zheng Q
    Sci Rep; 2014 May; 4():4875. PubMed ID: 24786521
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Self-Healing in Carbon Nitride Evidenced As Material Inflation and Superlubric Behavior.
    Bakoglidis KD; Palisaitis J; Dos Santos RB; Rivelino R; Persson POÅ; Gueorguiev GK; Hultman L
    ACS Appl Mater Interfaces; 2018 May; 10(19):16238-16243. PubMed ID: 29715003
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Slippery and Wear-Resistant Surfaces Enabled by Interface Engineered Graphene.
    Dwivedi N; Patra T; Lee JB; Yeo RJ; Srinivasan S; Dutta T; Sasikumar K; Dhand C; Tripathy S; Saifullah MSM; Danner A; Hashmi SAR; Srivastava AK; Ahn JH; Sankaranarayanan SKRS; Yang H; Bhatia CS
    Nano Lett; 2020 Feb; 20(2):905-917. PubMed ID: 31891512
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Insight Into the Superlubricity and Self-Assembly of Liquid Crystals.
    Tan S; Tao J; Luo W; Shi H; Tu B; Jiang H; Liu Y; Xu H; Zeng Q
    Front Chem; 2021; 9():668794. PubMed ID: 34178941
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Superlubricity of Fullerene Derivatives Induced by Host-Guest Assembly.
    Tan S; Shi H; Fu L; Ma J; Du X; Song J; Liu Y; Zeng Q; Xu H; Wan J
    ACS Appl Mater Interfaces; 2020 Apr; 12(16):18924-18933. PubMed ID: 32227981
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Stability of superlubric sliding on graphite.
    de Wijn AS; Fusco C; Fasolino A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046105. PubMed ID: 20481784
    [TBL] [Abstract][Full Text] [Related]  

  • 49. 3D-Printed Topological MoS
    Zhao Y; Mei H; Chang P; Yang Y; Huang W; Liu Y; Cheng L; Zhang L
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34984-34995. PubMed ID: 34278775
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Load-induced dynamical transitions at graphene interfaces.
    Peng D; Wu Z; Shi D; Qu C; Jiang H; Song Y; Ma M; Aeppli G; Urbakh M; Zheng Q
    Proc Natl Acad Sci U S A; 2020 Jun; 117(23):12618-12623. PubMed ID: 32457159
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Relation between interfacial shear and friction force in 2D materials.
    Rejhon M; Lavini F; Khosravi A; Shestopalov M; Kunc J; Tosatti E; Riedo E
    Nat Nanotechnol; 2022 Dec; 17(12):1280-1287. PubMed ID: 36316542
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Superlubric polycrystalline graphene interfaces.
    Gao X; Ouyang W; Urbakh M; Hod O
    Nat Commun; 2021 Sep; 12(1):5694. PubMed ID: 34584082
    [TBL] [Abstract][Full Text] [Related]  

  • 53. 3-Dimensional atomic scale structure of the ionic liquid-graphite interface elucidated by AM-AFM and quantum chemical simulations.
    Page AJ; Elbourne A; Stefanovic R; Addicoat MA; Warr GG; Voïtchovsky K; Atkin R
    Nanoscale; 2014 Jul; 6(14):8100-6. PubMed ID: 24916188
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Probing interlayer excitons in a vertical van der Waals p-n junction using a scanning probe microscopy technique.
    Rahaman M; Wagner C; Mukherjee A; Lopez-Rivera A; Gemming S; Zahn DRT
    J Phys Condens Matter; 2019 Mar; 31(11):114001. PubMed ID: 30625449
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Superlubricity using repulsive van der Waals forces.
    Feiler AA; Bergström L; Rutland MW
    Langmuir; 2008 Mar; 24(6):2274-6. PubMed ID: 18278966
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Robust superlubricity by strain engineering.
    Wang K; Ouyang W; Cao W; Ma M; Zheng Q
    Nanoscale; 2019 Jan; 11(5):2186-2193. PubMed ID: 30671572
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Superlubricity between a silicon tip and graphite enabled by the nanolithography-assisted nanoflakes tribo-transfer.
    Sha TD; Pang H; Fang L; Liu HX; Chen XC; Liu DM; Luo JB
    Nanotechnology; 2020 May; 31(20):205703. PubMed ID: 31995540
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Macroscale Superlubricity Enabled by Graphene-Coated Surfaces.
    Zhang Z; Du Y; Huang S; Meng F; Chen L; Xie W; Chang K; Zhang C; Lu Y; Lin CT; Li S; Parkin IP; Guo D
    Adv Sci (Weinh); 2020 Feb; 7(4):1903239. PubMed ID: 32099768
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The physics and chemistry of graphene-on-surfaces.
    Zhao G; Li X; Huang M; Zhen Z; Zhong Y; Chen Q; Zhao X; He Y; Hu R; Yang T; Zhang R; Li C; Kong J; Xu JB; Ruoff RS; Zhu H
    Chem Soc Rev; 2017 Jul; 46(15):4417-4449. PubMed ID: 28678225
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Superlubricity of Polyalkylene Glycol Aqueous Solutions Enabled by Ultrathin Layered Double Hydroxide Nanosheets.
    Wang H; Liu Y; Liu W; Liu Y; Wang K; Li J; Ma T; Eryilmaz OL; Shi Y; Erdemir A; Luo J
    ACS Appl Mater Interfaces; 2019 Jun; 11(22):20249-20256. PubMed ID: 31083968
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.