These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 32701965)
1. Model and design of real-time control system for aerial variable spray. Liu Y; Ru Y; Duan L; Qu R PLoS One; 2020; 15(7):e0235700. PubMed ID: 32701965 [TBL] [Abstract][Full Text] [Related]
2. Field evaluation of an unmanned aerial vehicle (UAV) sprayer: effect of spray volume on deposition and the control of pests and disease in wheat. Wang G; Lan Y; Qi H; Chen P; Hewitt A; Han Y Pest Manag Sci; 2019 Jun; 75(6):1546-1555. PubMed ID: 30620130 [TBL] [Abstract][Full Text] [Related]
3. Comparison of UAV and fixed-wing aerial application for alfalfa insect pest control: evaluating efficacy, residues, and spray quality. Li X; Giles DK; Andaloro JT; Long R; Lang EB; Watson LJ; Qandah I Pest Manag Sci; 2021 Nov; 77(11):4980-4992. PubMed ID: 34216079 [TBL] [Abstract][Full Text] [Related]
4. Spray performance evaluation of a six-rotor unmanned aerial vehicle sprayer for pesticide application using an orchard operation mode in apple orchards. Wang C; Liu Y; Zhang Z; Han L; Li Y; Zhang H; Wongsuk S; Li Y; Wu X; He X Pest Manag Sci; 2022 Jun; 78(6):2449-2466. PubMed ID: 35306733 [TBL] [Abstract][Full Text] [Related]
6. Swath pattern analysis from a multi-rotor unmanned aerial vehicle configured for pesticide application. Richardson B; Rolando CA; Somchit C; Dunker C; Strand TM; Kimberley MO Pest Manag Sci; 2020 Apr; 76(4):1282-1290. PubMed ID: 31595645 [TBL] [Abstract][Full Text] [Related]
7. Research on Methods Decreasing Pesticide Waste Based on Plant Protection Unmanned Aerial Vehicles: A Review. Hu H; Kaizu Y; Huang J; Furuhashi K; Zhang H; Li M; Imou K Front Plant Sci; 2022; 13():811256. PubMed ID: 35873963 [TBL] [Abstract][Full Text] [Related]
8. Effects of tank-mix adjuvants on physicochemical properties and dosage delivery at low dilution ratios for unmanned aerial vehicle application in paddy fields. Zhao R; Sun Z; Bird N; Gu YC; Xu Y; Zhang ZH; Wu XM Pest Manag Sci; 2022 Apr; 78(4):1582-1593. PubMed ID: 34984795 [TBL] [Abstract][Full Text] [Related]
9. Optimizing UAV spray parameters to improve precise control of tobacco pests at different growth stages. Shi X; Du Y; Liu X; Liu C; Hou Q; Chen L; Yong R; Ma J; Yang D; Yuan H; Guo J; Liu P; Yan X Pest Manag Sci; 2024 Nov; 80(11):5809-5819. PubMed ID: 39007292 [TBL] [Abstract][Full Text] [Related]
10. Design of Plant Protection UAV Variable Spray System Based on Neural Networks. Wen S; Zhang Q; Yin X; Lan Y; Zhang J; Ge Y Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30841563 [TBL] [Abstract][Full Text] [Related]
11. A Framework for Agricultural Pest and Disease Monitoring Based on Internet-of-Things and Unmanned Aerial Vehicles. Gao D; Sun Q; Hu B; Zhang S Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32182732 [TBL] [Abstract][Full Text] [Related]
12. Spray performance and control efficacy against pests in paddy rice by UAV-based pesticide application: effects of atomization, UAV configuration and flight velocity. Wongsuk S; Qi P; Wang C; Zeng A; Sun F; Yu F; Zhao X; Xiongkui H Pest Manag Sci; 2024 Apr; 80(4):2072-2084. PubMed ID: 38129096 [TBL] [Abstract][Full Text] [Related]
13. Field evaluation of a six-rotor unmanned agricultural aerial sprayer: effects of application parameters on spray deposition and control efficacy against rice planthopper. Huang Z; Wang C; Wongsuk S; Qi P; Liu L; Qiao B; Zhong L; He X Pest Manag Sci; 2023 Nov; 79(11):4664-4678. PubMed ID: 37448099 [TBL] [Abstract][Full Text] [Related]
14. Effect of flight velocity on droplet deposition and drift of combined pesticides sprayed using an unmanned aerial vehicle sprayer in a peach orchard. Li L; Hu Z; Liu Q; Yi T; Han P; Zhang R; Pan L Front Plant Sci; 2022; 13():981494. PubMed ID: 36247584 [TBL] [Abstract][Full Text] [Related]
15. Using tank-mix adjuvant improves the physicochemical properties and dosage delivery to reduce the use of pesticides in unmanned aerial vehicles for plant protection in wheat. Zhao R; Yu M; Sun Z; Li LJ; Shang HY; Xi WJ; Li B; Li YY; Xu Y; Wu XM Pest Manag Sci; 2022 Jun; 78(6):2512-2522. PubMed ID: 35318795 [TBL] [Abstract][Full Text] [Related]
16. Environmental, bystander and resident exposure from orchard applications using an agricultural unmanned aerial spraying system. Dubuis PH; Droz M; Melgar A; Zürcher UA; Zarn JA; Gindro K; König SLB Sci Total Environ; 2023 Jul; 881():163371. PubMed ID: 37044339 [TBL] [Abstract][Full Text] [Related]
17. Comparison of Droplet Size, Coverage, and Drift Potential from UAV Application Methods and Ground Application Methods on Row Crops. Gibbs J; Peters TM; Heck LP Trans ASABE; 2021; 64(3):819-828. PubMed ID: 37667776 [TBL] [Abstract][Full Text] [Related]
18. Determination of the effective swath of a plant protection UAV adapted to mist nozzles in mountain Nangguo pear orchards. Liu Y; Yao W; Guo S; Yan H; Yu Z; Meng S; Chen D; Chen C Front Plant Sci; 2024; 15():1336580. PubMed ID: 38974984 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of aerial spraying application of multi-rotor unmanned aerial vehicle for Wang J; Ma C; Chen P; Yao W; Yan Y; Zeng T; Chen S; Lan Y Front Plant Sci; 2023; 14():1093912. PubMed ID: 36925752 [TBL] [Abstract][Full Text] [Related]
20. Tank-mix adjuvants improved spray performance and biological efficacy in rice insecticide application with unmanned aerial vehicle sprayer. Wang L; Xia S; Zhang H; Li Y; Huang Z; Qiao B; Zhong L; Cao M; He X; Wang C; Liu Y Pest Manag Sci; 2024 Sep; 80(9):4371-4385. PubMed ID: 38662472 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]