BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 32702487)

  • 1. GEFF: Graph embedding for functional fingerprinting.
    Abbas K; Amico E; Svaldi DO; Tipnis U; Duong-Tran DA; Liu M; Rajapandian M; Harezlak J; Ances BM; Goñi J
    Neuroimage; 2020 Nov; 221():117181. PubMed ID: 32702487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain fingerprinting and cognitive behavior predicting using functional connectome of high inter-subject variability.
    Lu J; Yan T; Yang L; Zhang X; Li J; Li D; Xiang J; Wang B
    Neuroimage; 2024 Jul; 295():120651. PubMed ID: 38788914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-accuracy machine learning techniques for functional connectome fingerprinting and cognitive state decoding.
    Hannum A; Lopez MA; Blanco SA; Betzel RF
    Hum Brain Mapp; 2023 Nov; 44(16):5294-5308. PubMed ID: 37498048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Task modulations and clinical manifestations in the brain functional connectome in 1615 fMRI datasets.
    Kaufmann T; Alnæs D; Brandt CL; Doan NT; Kauppi K; Bettella F; Lagerberg TV; Berg AO; Djurovic S; Agartz I; Melle IS; Ueland T; Andreassen OA; Westlye LT
    Neuroimage; 2017 Feb; 147():243-252. PubMed ID: 27916665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissociating individual connectome traits using low-rank learning.
    Qin J; Shen H; Zeng LL; Gao K; Luo Z; Hu D
    Brain Res; 2019 Nov; 1722():146348. PubMed ID: 31348912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.
    James GA; Hazaroglu O; Bush KA
    Magn Reson Imaging; 2016 Feb; 34(2):209-18. PubMed ID: 26523655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain structure-function coupling provides signatures for task decoding and individual fingerprinting.
    Griffa A; Amico E; Liégeois R; Van De Ville D; Preti MG
    Neuroimage; 2022 Apr; 250():118970. PubMed ID: 35124226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resting state dynamics meets anatomical structure: Temporal multiple kernel learning (tMKL) model.
    Surampudi SG; Misra J; Deco G; Bapi RS; Sharma A; Roy D
    Neuroimage; 2019 Jan; 184():609-620. PubMed ID: 30267857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Task-induced brain connectivity promotes the detection of individual differences in brain-behavior relationships.
    Jiang R; Zuo N; Ford JM; Qi S; Zhi D; Zhuo C; Xu Y; Fu Z; Bustillo J; Turner JA; Calhoun VD; Sui J
    Neuroimage; 2020 Feb; 207():116370. PubMed ID: 31751666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Simpson's paradox and fMRI: Similarities and differences between functional connectivity measures derived from within-subject and across-subject correlations.
    Roberts RP; Hach S; Tippett LJ; Addis DR
    Neuroimage; 2016 Jul; 135():1-15. PubMed ID: 27101735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The quest for identifiability in human functional connectomes.
    Amico E; Goñi J
    Sci Rep; 2018 May; 8(1):8254. PubMed ID: 29844466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncovering multi-site identifiability based on resting-state functional connectomes.
    Bari S; Amico E; Vike N; Talavage TM; Goñi J
    Neuroimage; 2019 Nov; 202():115967. PubMed ID: 31352124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. rest2vec: Vectorizing the resting-state functional connectome using graph embedding.
    Morrissey ZD; Zhan L; Ajilore O; Leow AD
    Neuroimage; 2021 Feb; 226():117538. PubMed ID: 33188880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracting orthogonal subject- and condition-specific signatures from fMRI data using whole-brain effective connectivity.
    Pallarés V; Insabato A; Sanjuán A; Kühn S; Mantini D; Deco G; Gilson M
    Neuroimage; 2018 Sep; 178():238-254. PubMed ID: 29753842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional connectome fingerprinting: Identifying individuals and predicting cognitive functions via autoencoder.
    Cai B; Zhang G; Zhang A; Xiao L; Hu W; Stephen JM; Wilson TW; Calhoun VD; Wang YP
    Hum Brain Mapp; 2021 Jun; 42(9):2691-2705. PubMed ID: 33835637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gender classification using mesh networks on multiresolution multitask fMRI data.
    Onal Ertugrul I; Ozay M; Yarman Vural FT
    Brain Imaging Behav; 2020 Apr; 14(2):460-476. PubMed ID: 30671775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Connectome-based predictive modeling of attention: Comparing different functional connectivity features and prediction methods across datasets.
    Yoo K; Rosenberg MD; Hsu WT; Zhang S; Li CR; Scheinost D; Constable RT; Chun MM
    Neuroimage; 2018 Feb; 167():11-22. PubMed ID: 29122720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic mode decomposition of resting-state and task fMRI.
    Casorso J; Kong X; Chi W; Van De Ville D; Yeo BTT; Liégeois R
    Neuroimage; 2019 Jul; 194():42-54. PubMed ID: 30904469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Joint embedding: A scalable alignment to compare individuals in a connectivity space.
    Nenning KH; Xu T; Schwartz E; Arroyo J; Woehrer A; Franco AR; Vogelstein JT; Margulies DS; Liu H; Smallwood J; Milham MP; Langs G
    Neuroimage; 2020 Nov; 222():117232. PubMed ID: 32771618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning dynamic graph embeddings for accurate detection of cognitive state changes in functional brain networks.
    Lin Y; Yang D; Hou J; Yan C; Kim M; Laurienti PJ; Wu G
    Neuroimage; 2021 Apr; 230():117791. PubMed ID: 33545348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.