These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 32702681)

  • 1. Transport behavior of pressure-driven electrolyte solution through a surface-charged nanochannel.
    Cao G
    Nanotechnology; 2020 Oct; 31(44):445404. PubMed ID: 32702681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overlimiting current near a nanochannel a new insight using molecular dynamics simulations.
    Manikandan D; Nandigana VVR
    Sci Rep; 2021 Jul; 11(1):15216. PubMed ID: 34312433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Surface Charge on the Nanofriction and Its Velocity Dependence in an Electrolyte Based on Lateral Force Microscopy.
    Jing D; Pan Y; Li D; Zhao X; Bhushan B
    Langmuir; 2017 Feb; 33(8):1792-1798. PubMed ID: 28161957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electric Interfacial Layer of Modified Cellulose Nanocrystals in Aqueous Electrolyte Solution: Predictions by the Molecular Theory of Solvation.
    Lyubimova O; Stoyanov SR; Gusarov S; Kovalenko A
    Langmuir; 2015 Jun; 31(25):7106-16. PubMed ID: 26053228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-isothermal flow of an electrolyte in a charged nanochannel.
    Prakash K; K V S D; Kumar Kannam S; Sathian SP
    Nanotechnology; 2020 May; 31(42):425403. PubMed ID: 32365344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A submicron device to rectify a square-wave angular velocity.
    Moradian A; Miri MF
    Eur Phys J E Soft Matter; 2011 Feb; 34(2):12. PubMed ID: 21337018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inclined granular flow in a narrow chute.
    Zhang S; Yang G; Lin P; Chen L; Yang L
    Eur Phys J E Soft Matter; 2019 Apr; 42(4):40. PubMed ID: 30927109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffusioosmotic flows in slit nanochannels.
    Qian S; Das B; Luo X
    J Colloid Interface Sci; 2007 Nov; 315(2):721-30. PubMed ID: 17719599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The interplay of diffusional and electrophoretic transport mechanisms of charged solutes in the liquid film surrounding charged nonporous adsorbent particles employed in finite bath adsorption systems.
    Grimes BA; Liapis AI
    J Colloid Interface Sci; 2002 Apr; 248(2):504-20. PubMed ID: 16290557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A theory of the saturable ohmic channel.
    Pickard WF
    J Theor Biol; 1986 Sep; 122(1):1-6. PubMed ID: 2432358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of water confined in a graphene nanochannel: dependence of friction on graphene chirality.
    Yang L; Guo Y
    Nanotechnology; 2020 Mar; 31(23):235702. PubMed ID: 32066118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shear strength of wet granular materials: Macroscopic cohesion and effective stress : Discrete numerical simulations, confronted to experimental measurements.
    Badetti M; Fall A; Chevoir F; Roux JN
    Eur Phys J E Soft Matter; 2018 May; 41(5):68. PubMed ID: 29802504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. (Almost) Stationary Isotachophoretic Concentration Boundary in a Nanofluidic Channel Using Charge Inversion.
    Loessberg-Zahl J; Janssen KG; McCallum C; Gillespie D; Pennathur S
    Anal Chem; 2016 Jun; 88(12):6145-50. PubMed ID: 27268953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical Investigation of Diffusioosmotic Flow in a Tapered Nanochannel.
    Chanda S; Tsai PA
    Membranes (Basel); 2022 Apr; 12(5):. PubMed ID: 35629807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonmechanical principle for producing a flow in a homogeneously aligned microfluidic nematic channel.
    S Liwa I; Zakharov AV
    Eur Phys J E Soft Matter; 2020 May; 43(5):29. PubMed ID: 32447565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of the moments in advection-diffusion lattice Boltzmann method. II. Attenuation of the boundary layers via double-Λ bounce-back flux scheme.
    Ginzburg I
    Phys Rev E; 2017 Jan; 95(1-1):013305. PubMed ID: 28208489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slip length and structure of liquid water flowing past atomistic smooth charged walls.
    Geng X; Yu M; Zhang W; Liu Q; Yu X; Lu Y
    Sci Rep; 2019 Dec; 9(1):18957. PubMed ID: 31831805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrolyte solution transport in electropolar nanotubes.
    Zhao J; Culligan PJ; Qiao Y; Zhou Q; Li Y; Tak M; Park T; Chen X
    J Phys Condens Matter; 2010 Aug; 22(31):315301. PubMed ID: 21399357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of a liquid flow on the forces between charged solid surfaces and the non-equilibrium electric double layer.
    McNamee CE
    Adv Colloid Interface Sci; 2019 Apr; 266():21-33. PubMed ID: 30831437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.