These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 32702687)

  • 1. 1D and 2D error assessment and correction for extrusion-based bioprinting using process sensing and control strategies.
    Armstrong AA; Alleyne AG; Wagoner Johnson AJ
    Biofabrication; 2020 Aug; 12(4):045023. PubMed ID: 32702687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct process feedback in extrusion-based 3D bioprinting.
    Armstrong AA; Norato J; Alleyne AG; Wagoner Johnson AJ
    Biofabrication; 2019 Dec; 12(1):015017. PubMed ID: 31825905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous and highly accurate multi-material extrusion-based bioprinting with optical coherence tomography imaging.
    Wang J; Xu C; Yang S; Wang L; Xu M
    Int J Bioprint; 2023; 9(3):707. PubMed ID: 37274000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks.
    Sorkio A; Koch L; Koivusalo L; Deiwick A; Miettinen S; Chichkov B; Skottman H
    Biomaterials; 2018 Jul; 171():57-71. PubMed ID: 29684677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Embedded Multimaterial Extrusion Bioprinting.
    Rocca M; Fragasso A; Liu W; Heinrich MA; Zhang YS
    SLAS Technol; 2018 Apr; 23(2):154-163. PubMed ID: 29132232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Deep Learning Quality Control Loop of the Extrusion-based Bioprinting Process.
    Bonatti AF; Vozzi G; Chua CK; Maria C
    Int J Bioprint; 2022; 8(4):620. PubMed ID: 36404777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The emerging role of microfluidics in multi-material 3D bioprinting.
    Richard C; Neild A; Cadarso VJ
    Lab Chip; 2020 Jun; 20(12):2044-2056. PubMed ID: 32459222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D bioprinting of hydrogel constructs with cell and material gradients for the regeneration of full-thickness chondral defect using a microfluidic printing head.
    Idaszek J; Costantini M; Karlsen TA; Jaroszewicz J; Colosi C; Testa S; Fornetti E; Bernardini S; Seta M; Kasarełło K; Wrzesień R; Cannata S; Barbetta A; Gargioli C; Brinchman JE; Święszkowski W
    Biofabrication; 2019 Jul; 11(4):044101. PubMed ID: 31151123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of cell deposition by self-absorbent capability of freeze-dried 3D-bioprinted scaffolds derived from cellulose material-alginate hydrogels.
    Li Z; Ramos A; Li MC; Li Z; Bhatta S; Jeyaseelan A; Li Y; Wu Q; Yao S; Xu J
    Biomed Phys Eng Express; 2020 May; 6(4):045009. PubMed ID: 33444270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advancing bioinks for 3D bioprinting using reactive fillers: A review.
    Heid S; Boccaccini AR
    Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional bioprinting of cell-laden constructs with polycaprolactone protective layers for using various thermoplastic polymers.
    Kim BS; Jang J; Chae S; Gao G; Kong JS; Ahn M; Cho DW
    Biofabrication; 2016 Aug; 8(3):035013. PubMed ID: 27550946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pre-set extrusion bioprinting for multiscale heterogeneous tissue structure fabrication.
    Kang D; Ahn G; Kim D; Kang HW; Yun S; Yun WS; Shim JH; Jin S
    Biofabrication; 2018 Jun; 10(3):035008. PubMed ID: 29786607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-axial wet-spinning in 3D bioprinting: state of the art and future perspective of microfluidic integration.
    Costantini M; Colosi C; Święszkowski W; Barbetta A
    Biofabrication; 2018 Nov; 11(1):012001. PubMed ID: 30284540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermally-controlled extrusion-based bioprinting of collagen.
    Moncal KK; Ozbolat V; Datta P; Heo DN; Ozbolat IT
    J Mater Sci Mater Med; 2019 Apr; 30(5):55. PubMed ID: 31041538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrashort Peptide Bioinks Support Automated Printing of Large-Scale Constructs Assuring Long-Term Survival of Printed Tissue Constructs.
    Susapto HH; Alhattab D; Abdelrahman S; Khan Z; Alshehri S; Kahin K; Ge R; Moretti M; Emwas AH; Hauser CAE
    Nano Lett; 2021 Apr; 21(7):2719-2729. PubMed ID: 33492960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D bioprinting for drug discovery and development in pharmaceutics.
    Peng W; Datta P; Ayan B; Ozbolat V; Sosnoski D; Ozbolat IT
    Acta Biomater; 2017 Jul; 57():26-46. PubMed ID: 28501712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D bioprinted human iPSC-derived somatosensory constructs with functional and highly purified sensory neuron networks.
    Hirano M; Huang Y; Vela Jarquin D; De la Garza Hernández RL; Jodat YA; Luna Cerón E; García-Rivera LE; Shin SR
    Biofabrication; 2021 Jun; 13(3):. PubMed ID: 33962404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced rheological behaviors of alginate hydrogels with carrageenan for extrusion-based bioprinting.
    Kim MH; Lee YW; Jung WK; Oh J; Nam SY
    J Mech Behav Biomed Mater; 2019 Oct; 98():187-194. PubMed ID: 31252328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of gelatin as an effective energy absorbing layer for laser bioprinting.
    Xiong R; Zhang Z; Chai W; Chrisey DB; Huang Y
    Biofabrication; 2017 Jun; 9(2):024103. PubMed ID: 28597844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multicomponent bioprinting of heterogeneous hydrogel constructs based on microfluidic printheads.
    Feng F; He J; Li J; Mao M; Li D
    Int J Bioprint; 2019; 5(2):202. PubMed ID: 32596537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.