BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 32703044)

  • 1. Electroformation of liposomes and phytosomes using copper electrode.
    Behuria HG; Biswal BK; Sahu SK
    J Liposome Res; 2021 Sep; 31(3):255-266. PubMed ID: 32703044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AC-electric field dependent electroformation of giant lipid vesicles.
    Politano TJ; Froude VE; Jing B; Zhu Y
    Colloids Surf B Biointerfaces; 2010 Aug; 79(1):75-82. PubMed ID: 20413284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electroformation of phospholipid giant unilamellar vesicles in physiological phosphate buffer.
    Lefrançois P; Goudeau B; Arbault S
    Integr Biol (Camb); 2018 Jul; 10(7):429-434. PubMed ID: 29943778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid lateral organization on giant unilamellar vesicles containing lipopolysaccharides.
    Kubiak J; Brewer J; Hansen S; Bagatolli LA
    Biophys J; 2011 Feb; 100(4):978-86. PubMed ID: 21320442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of the Electroformation of Giant Unilamellar Vesicles (GUVs) with Unsaturated Phospholipids.
    Breton M; Amirkavei M; Mir LM
    J Membr Biol; 2015 Oct; 248(5):827-35. PubMed ID: 26238509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electroformation of giant unilamellar vesicles in saline solution.
    Li Q; Wang X; Ma S; Zhang Y; Han X
    Colloids Surf B Biointerfaces; 2016 Nov; 147():368-375. PubMed ID: 27566225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of charge and size on the interaction of unilamellar liposomes with macrophages.
    Schwendener RA; Lagocki PA; Rahman YE
    Biochim Biophys Acta; 1984 Apr; 772(1):93-101. PubMed ID: 6712952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient electroformation of supergiant unilamellar vesicles containing cationic lipids on ITO-coated electrodes.
    Herold C; Chwastek G; Schwille P; Petrov EP
    Langmuir; 2012 Apr; 28(13):5518-21. PubMed ID: 22424289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Electrical Parameters and Cholesterol Concentration on Giant Unilamellar Vesicles Electroformation.
    Boban Z; Puljas A; Kovač D; Subczynski WK; Raguz M
    Cell Biochem Biophys; 2020 Jun; 78(2):157-164. PubMed ID: 32319021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electroformation of giant unilamellar vesicles from erythrocyte membranes under low-salt conditions.
    Mikelj M; Praper T; Demič R; Hodnik V; Turk T; Anderluh G
    Anal Biochem; 2013 Apr; 435(2):174-80. PubMed ID: 23333270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constant pressure-controlled extrusion method for the preparation of Nano-sized lipid vesicles.
    Morton LA; Saludes JP; Yin H
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22760481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Point-to-Plane Nonhomogeneous Electric-Field-Induced Simultaneous Formation of Giant Unilamellar Vesicles (GUVs) and Lipid Tubes.
    Zhu C; Zhang Y; Wang Y; Li Q; Mu W; Han X
    Chemistry; 2016 Feb; 22(9):2906-9. PubMed ID: 26756162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cheap portable electroformed giant unilamellar vesicles preparation kit.
    Doğan Güzel F; Kaur J; Zendeh Z
    J Liposome Res; 2023 Jun; 33(2):183-188. PubMed ID: 36541743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impacts of electrical parameters on the electroformation of giant vesicles on ITO glass chips.
    Li W; Wang Q; Yang Z; Wang W; Cao Y; Hu N; Luo H; Liao Y; Yang J
    Colloids Surf B Biointerfaces; 2016 Apr; 140():560-566. PubMed ID: 26628330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of giant unilamellar vesicles to study functional properties of pore-forming toxins.
    Aden S; Snoj T; Anderluh G
    Methods Enzymol; 2021; 649():219-251. PubMed ID: 33712188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Giant vesicles formed by gentle hydration and electroformation: a comparison by fluorescence microscopy.
    Rodriguez N; Pincet F; Cribier S
    Colloids Surf B Biointerfaces; 2005 May; 42(2):125-30. PubMed ID: 15833663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electroformation of giant unilamellar vesicles from native membranes and organic lipid mixtures for the study of lipid domains under physiological ionic-strength conditions.
    Montes LR; Ahyayauch H; Ibarguren M; Sot J; Alonso A; Bagatolli LA; Goñi FM
    Methods Mol Biol; 2010; 606():105-14. PubMed ID: 20013393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. QS21-Initiated Fusion of Liposomal Small Unilamellar Vesicles to Form ALFQ Results in Concentration of Most of the Monophosphoryl Lipid A, QS21, and Cholesterol in Giant Unilamellar Vesicles.
    Abucayon EG; Rao M; Matyas GR; Alving CR
    Pharmaceutics; 2023 Aug; 15(9):. PubMed ID: 37765181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of electroformation protocol parameters on quality of homogeneous GUV populations.
    Drabik D; Doskocz J; Przybyło M
    Chem Phys Lipids; 2018 May; 212():88-95. PubMed ID: 29408045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of the size of electroformed giant unilamellar vesicle using response surface methodology.
    Ghellab SE; Mu W; Li Q; Han X
    Biophys Chem; 2019 Oct; 253():106217. PubMed ID: 31306917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.