These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 32703309)

  • 1. Impact of prematurity and the CTG repeat length on outcomes in congenital myotonic dystrophy.
    Saito Y; Matsumura K; Kageyama M; Kato Y; Ohta E; Sumi K; Futatani T; Yoshida T
    BMC Res Notes; 2020 Jul; 13(1):350. PubMed ID: 32703309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Paternal transmission of the congenital form of myotonic dystrophy type 1: a new case and review of the literature.
    Zeesman S; Carson N; Whelan DT
    Am J Med Genet; 2002 Jan; 107(3):222-6. PubMed ID: 11807903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Disease picture of myotonic muscular dystrophy in patients with large CTG triplet expansion].
    Spranger M; Janssen B; Rating D; Spranger S
    Nervenarzt; 1999 Feb; 70(2):131-5. PubMed ID: 10098148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of the CTG repeat expansion in congenital myotonic dystrophy.
    Ohya K; Tachi N; Sato T; Kon S; Kikuchi K; Chiba S
    Jpn J Hum Genet; 1997 Mar; 42(1):169-80. PubMed ID: 9183996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myotonic dystrophy type 1 (DM1) clinical subtypes and CTCF site methylation status flanking the CTG expansion are mutant allele length-dependent.
    Morales F; Corrales E; Zhang B; Vásquez M; Santamaría-Ulloa C; Quesada H; Sirito M; Estecio MR; Monckton DG; Krahe R
    Hum Mol Genet; 2021 Dec; 31(2):262-274. PubMed ID: 34432028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Congenital myotonic dystrophy can show congenital fiber type disproportion pathology.
    Tominaga K; Hayashi YK; Goto K; Minami N; Noguchi S; Nonaka I; Miki T; Nishino I
    Acta Neuropathol; 2010 Apr; 119(4):481-6. PubMed ID: 20179953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Severity of cardiac conduction involvement and arrhythmias in myotonic dystrophy type 1 correlates with age and CTG repeat length.
    Groh WJ; Lowe MR; Zipes DP
    J Cardiovasc Electrophysiol; 2002 May; 13(5):444-8. PubMed ID: 12030525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A case of paternally inherited congenital myotonic dystrophy.
    Nakagawa M; Yamada H; Higuchi I; Kaminishi Y; Miki T; Johnson K; Osame M
    J Med Genet; 1994 May; 31(5):397-400. PubMed ID: 8064819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The utility of the determination of CTG trinucleotide repeat length in hypotonic infants.
    Bodensteiner JB; Byler DL; Jaynes ME
    Semin Pediatr Neurol; 1999 Sep; 6(3):243-5; discussion 245-6. PubMed ID: 10522348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diastolic heart dysfunction is correlated with CTG repeat length in myotonic dystrophy type 1.
    Park JS; Kim N; Park D
    Neurol Sci; 2018 Nov; 39(11):1935-1943. PubMed ID: 30094526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical and genetic characteristics of childhood-onset myotonic dystrophy.
    Stokes M; Varughese N; Iannaccone S; Castro D
    Muscle Nerve; 2019 Dec; 60(6):732-738. PubMed ID: 31520483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of the sex of the transmitting grandparent in congenital myotonic dystrophy.
    López de Munain A; Cobo AM; Poza JJ; Navarrete D; Martorell L; Palau F; Emparanza JI; Baiget M
    J Med Genet; 1995 Sep; 32(9):689-91. PubMed ID: 8544186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation between CTG trinucleotide repeat length and frequency of severe congenital myotonic dystrophy.
    Tsilfidis C; MacKenzie AE; Mettler G; Barceló J; Korneluk RG
    Nat Genet; 1992 Jun; 1(3):192-5. PubMed ID: 1303233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CTG repeat size and histologic findings of skeletal muscle from patients with congenital myotonic dystrophy.
    Tachi N; Kozuka N; Ohya K; Chiba S; Kikuchi K
    J Child Neurol; 1996 Nov; 11(6):430-2. PubMed ID: 9120218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CTG repeat lengths of the DMPK gene in myotonic dystrophy patients compared to healthy controls in Thailand.
    Theerasasawat S; Papsing C; Pulkes T
    J Clin Neurosci; 2010 Dec; 17(12):1520-2. PubMed ID: 20801043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recovery in the Myogenic Program of Congenital Myotonic Dystrophy Myoblasts after Excision of the Expanded (CTG)
    André LM; van Cruchten RTP; Willemse M; Bezstarosti K; Demmers JAA; van Agtmaal EL; Wansink DG; Wieringa B
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31766224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [DNA diagnosis in myotonic dystrophy].
    Tachi N
    Hokkaido Igaku Zasshi; 1996 Jan; 71(1):3-8. PubMed ID: 8727368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Respiratory failure in a mouse model of myotonic dystrophy does not correlate with the CTG repeat length.
    Panaite PA; Kuntzer T; Gourdon G; Barakat-Walter I
    Respir Physiol Neurobiol; 2013 Oct; 189(1):22-6. PubMed ID: 23811192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CTG repeat number at the myotonic dystrophy locus in healthy Kuwaiti individuals: possible explanation of why myotonic dystrophy is rare in Kuwait.
    Alfadhli S; Elshafey AE; Bastaki L; Al-Awadi S
    Arch Neurol; 2004 Jun; 61(6):895-8. PubMed ID: 15210527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 12-Month progression of motor and functional outcomes in congenital myotonic dystrophy.
    Quigg KH; Berggren KN; McIntyre M; Bates K; Salmin F; Casiraghi JL; DʼAmico A; Astrea G; Ricci F; McKay MJ; Baldwin JN; Burns J; Campbell C; Sansone VA; Johnson NE
    Muscle Nerve; 2021 Mar; 63(3):384-391. PubMed ID: 33341951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.