BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 32703425)

  • 1. Bile acids elevated by high-fat feeding induce endoplasmic reticulum stress in intestinal stem cells and contribute to mucosal barrier damage.
    Huang D; Xiong M; Xu X; Wu X; Xu J; Cai X; Lu L; Zhou H
    Biochem Biophys Res Commun; 2020 Aug; 529(2):289-295. PubMed ID: 32703425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An elevated deoxycholic acid level induced by high-fat feeding damages intestinal stem cells by reducing the ileal IL-22.
    Xu J; Huang D; Xu X; Wu X; Liu L; Niu W; Lu L; Zhou H
    Biochem Biophys Res Commun; 2021 Nov; 579():153-160. PubMed ID: 34601200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intestinal Stem Cells Damaged by Deoxycholic Acid via AHR Pathway Contributes to Mucosal Barrier Dysfunction in High-Fat Feeding Mice.
    Liu L; Xu J; Xu X; Mao T; Niu W; Wu X; Lu L; Zhou H
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. (-)-Epicatechin and NADPH oxidase inhibitors prevent bile acid-induced Caco-2 monolayer permeabilization through ERK1/2 modulation.
    Wang Z; Litterio MC; Müller M; Vauzour D; Oteiza PI
    Redox Biol; 2020 Jan; 28():101360. PubMed ID: 31677553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel mechanism for gut barrier dysfunction by dietary fat: epithelial disruption by hydrophobic bile acids.
    Stenman LK; Holma R; Eggert A; Korpela R
    Am J Physiol Gastrointest Liver Physiol; 2013 Feb; 304(3):G227-34. PubMed ID: 23203158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wnt/β-catenin-mediated heat exposure inhibits intestinal epithelial cell proliferation and stem cell expansion through endoplasmic reticulum stress.
    Zhou JY; Huang DG; Zhu M; Gao CQ; Yan HC; Li XG; Wang XQ
    J Cell Physiol; 2020 Jul; 235(7-8):5613-5627. PubMed ID: 31960439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-fat Diet-induced Intestinal Hyperpermeability is Associated with Increased Bile Acids in the Large Intestine of Mice.
    Murakami Y; Tanabe S; Suzuki T
    J Food Sci; 2016 Jan; 81(1):H216-22. PubMed ID: 26595891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bile Acid Derivatives Effectively Prevented High-Fat Diet-Induced Colonic Barrier Dysfunction.
    Ma Y; Shan K; Huang Z; Zhao D; Zhang M; Ke W; Li C
    Mol Nutr Food Res; 2023 May; 67(10):e2200649. PubMed ID: 36950899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High Fat Diets Induce Colonic Epithelial Cell Stress and Inflammation that is Reversed by IL-22.
    Gulhane M; Murray L; Lourie R; Tong H; Sheng YH; Wang R; Kang A; Schreiber V; Wong KY; Magor G; Denman S; Begun J; Florin TH; Perkins A; Cuív PÓ; McGuckin MA; Hasnain SZ
    Sci Rep; 2016 Jun; 6():28990. PubMed ID: 27350069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-fat enteral nutrition reduces intestinal mucosal barrier damage after peritoneal air exposure.
    Tan SJ; Yu C; Yu Z; Lin ZL; Wu GH; Yu WK; Li JS; Li N
    J Surg Res; 2016 May; 202(1):77-86. PubMed ID: 27083951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bile acid toxicity in Paneth cells contributes to gut dysbiosis induced by high-fat feeding.
    Zhou H; Zhou SY; Gillilland M; Li JY; Lee A; Gao J; Zhang G; Xu X; Owyang C
    JCI Insight; 2020 Oct; 5(20):. PubMed ID: 33055426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orthotopic transplantation of intestinal mucosal organoids in rodents.
    Avansino JR; Chen DC; Hoagland VD; Woolman JD; Stelzner M
    Surgery; 2006 Sep; 140(3):423-34. PubMed ID: 16934605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alteration of Bile Acid Metabolism by a High-Fat Diet Is Associated with Plasma Transaminase Activities and Glucose Intolerance in Rats.
    Yoshitsugu R; Kikuchi K; Iwaya H; Fujii N; Hori S; Lee DG; Ishizuka S
    J Nutr Sci Vitaminol (Tokyo); 2019; 65(1):45-51. PubMed ID: 30814411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deoxycholic acid disrupts the intestinal mucosal barrier and promotes intestinal tumorigenesis.
    Liu L; Dong W; Wang S; Zhang Y; Liu T; Xie R; Wang B; Cao H
    Food Funct; 2018 Nov; 9(11):5588-5597. PubMed ID: 30339173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-fat diet promotes experimental colitis by inducing oxidative stress in the colon.
    Li X; Wei X; Sun Y; Du J; Li X; Xun Z; Li YC
    Am J Physiol Gastrointest Liver Physiol; 2019 Oct; 317(4):G453-G462. PubMed ID: 31411504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sleep Deprivation Impairs Intestinal Mucosal Barrier by Activating Endoplasmic Reticulum Stress in Goblet Cells.
    Li G; Gao M; Zhang S; Dai T; Wang F; Geng J; Rao J; Qin X; Qian J; Zuo L; Zhou M; Liu L; Zhou H
    Am J Pathol; 2024 Jan; 194(1):85-100. PubMed ID: 37918798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of diet-induced obesity on intestinal stem cells: hyperproliferation but impaired intrinsic function that requires insulin/IGF1.
    Mah AT; Van Landeghem L; Gavin HE; Magness ST; Lund PK
    Endocrinology; 2014 Sep; 155(9):3302-14. PubMed ID: 24914941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bile acids modulate tight junction structure and barrier function of Caco-2 monolayers via EGFR activation.
    Raimondi F; Santoro P; Barone MV; Pappacoda S; Barretta ML; Nanayakkara M; Apicella C; Capasso L; Paludetto R
    Am J Physiol Gastrointest Liver Physiol; 2008 Apr; 294(4):G906-13. PubMed ID: 18239063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bile acids induce ileal damage during experimental necrotizing enterocolitis.
    Halpern MD; Holubec H; Saunders TA; Dvorak K; Clark JA; Doelle SM; Ballatori N; Dvorak B
    Gastroenterology; 2006 Feb; 130(2):359-72. PubMed ID: 16472592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-fat diet intake modulates maternal intestinal adaptations to pregnancy and results in placental hypoxia, as well as altered fetal gut barrier proteins and immune markers.
    Gohir W; Kennedy KM; Wallace JG; Saoi M; Bellissimo CJ; Britz-McKibbin P; Petrik JJ; Surette MG; Sloboda DM
    J Physiol; 2019 Jun; 597(12):3029-3051. PubMed ID: 31081119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.