These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 3270376)

  • 1. Experimental evaluation of biodegradable ceramics as a substitute for bone grafting.
    Laufer D; Ben-Aryeh H; Kerner H; Gutman D; Mordohovich D; Ish-Shalom M; Fischer R; Harel L
    Isr J Dent Sci; 1988 Nov; 2(2):84-9. PubMed ID: 3270376
    [No Abstract]   [Full Text] [Related]  

  • 2. [Use of biodegradable ceramics in periodontal lesions].
    Levin MP; Getter L; Cutright DE; Bhaskar SN
    Dent Cadmos; 1976 Jul; 44(7):34-41. PubMed ID: 1076167
    [No Abstract]   [Full Text] [Related]  

  • 3. [Tricalcium phosphate and its biodegradable ceramics in periodontal bone surgery. A review of the literature].
    Strub JR; Gaberthüel TW
    SSO Schweiz Monatsschr Zahnheilkd; 1978 Jul; 88(7):798-803. PubMed ID: 353979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalization of biomechanical rules for the fixation of bone, joint, and tooth replacements.
    Heimke G; Schulte W; Griss P; Jentschura G; Schulz P
    J Biomed Mater Res; 1980 Jul; 14(4):537-43. PubMed ID: 6995463
    [No Abstract]   [Full Text] [Related]  

  • 5. Experimental study of xenogeneic osteogenesis using bovine sintered bone "true bone ceramic (TBC)" combined with bovine bone morphogenetic protein (bBMP).
    Horiuchi K; Yoshida S; Shohara E; Sugimura M
    Dtsch Zahnarztl Z; 1988 Jan; 43(1):93-6. PubMed ID: 3165787
    [No Abstract]   [Full Text] [Related]  

  • 6. Biomechanical behavior of hydroxyapatite as bone substitute material in a loaded implant model. On the surface strain measurement and the maximum compression strength determination of material crash.
    Noro T; Itoh K
    Biomed Mater Eng; 1999; 9(5-6):319-24. PubMed ID: 10822487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical evaluation of bone-porous material interfaces.
    Niles JL; Coletti JM; Wilson C
    J Biomed Mater Res; 1973 Mar; 7(2):231-51. PubMed ID: 4703760
    [No Abstract]   [Full Text] [Related]  

  • 8. Natural coral exoskeleton as a bone graft substitute: a review.
    Demers C; Hamdy CR; Corsi K; Chellat F; Tabrizian M; Yahia L
    Biomed Mater Eng; 2002; 12(1):15-35. PubMed ID: 11847406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extended bioactivity in the proximity of hydroxyapatite ceramic surfaces induced by polarization charges.
    Nakamura S; Kobayashi T; Yamashita K
    J Biomed Mater Res; 2002 Sep; 61(4):593-9. PubMed ID: 12115449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradation and bioabsorption innovation of the functionally graded bovine bone-originated apatite with blood permeability.
    Akazawa T; Murata M; Sasaki T; Tazaki J; Kobayashi M; Kanno T; Nakamura K; Arisue M
    J Biomed Mater Res A; 2006 Jan; 76(1):44-51. PubMed ID: 16206265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Hybrid substitute materials for bone. Initial results and perspectives].
    Frayssinet P; Autefage A
    Rev Rhum Ed Fr; 1993 May; 60(5):342-51. PubMed ID: 8167641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Functionally stressed ceramic implants and tissue reactions. A long-term experimental animal and clinical study].
    Kirschner H
    Dtsch Zahnarztl Z; 1983 Mar; 38(3):238-53. PubMed ID: 6573255
    [No Abstract]   [Full Text] [Related]  

  • 13. Bioceramics and dentistry.
    Garrington GE; Lightbody PM
    J Biomed Mater Res; 1972; 6(1):333-43. PubMed ID: 5014903
    [No Abstract]   [Full Text] [Related]  

  • 14. Biodegradable bone repair materials. Synthetic polymers and ceramics.
    Hollinger JO; Battistone GC
    Clin Orthop Relat Res; 1986 Jun; (207):290-305. PubMed ID: 3522015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SEM-EPMA observation of three types of apatite-containing glass-ceramics implanted in bone: the variance of a Ca-P-rich layer.
    Kitsugi T; Nakamura T; Yamamura T; Kokubu T; Shibuya T; Takagi M
    J Biomed Mater Res; 1987 Oct; 21(10):1255-71. PubMed ID: 3693388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The manufacture of synthetic non-sintered and degradable bone grafting substitutes.
    Gerike W; Bienengräber V; Henkel KO; Bayerlein T; Proff P; Gedrange T; Gerber T
    Folia Morphol (Warsz); 2006 Feb; 65(1):54-5. PubMed ID: 16783737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ectopic bone formation associated with mesenchymal stem cells in a resorbable calcium deficient hydroxyapatite carrier.
    Kasten P; Vogel J; Luginbühl R; Niemeyer P; Tonak M; Lorenz H; Helbig L; Weiss S; Fellenberg J; Leo A; Simank HG; Richter W
    Biomaterials; 2005 Oct; 26(29):5879-89. PubMed ID: 15913762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stress distribution in bone arising from loading on endosteal dental implants.
    Tesk JA; Widera O
    J Biomed Mater Res; 1973; 7(3):251-61. PubMed ID: 4577872
    [No Abstract]   [Full Text] [Related]  

  • 19. Anorganic bovine bone and ceramic analogs of bone mineral as implants to facilitate bone regeneration.
    Spector M
    Clin Plast Surg; 1994 Jul; 21(3):437-44. PubMed ID: 7924142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A substitute for bone.
    Mathai JK; Bhat KS
    Middle East Health; 1987 Jan; 11(1):43D-44D. PubMed ID: 3269923
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.