These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 32703978)

  • 21. Highly Disordered Amyloid-β Monomer Probed by Single-Molecule FRET and MD Simulation.
    Meng F; Bellaiche MMJ; Kim JY; Zerze GH; Best RB; Chung HS
    Biophys J; 2018 Feb; 114(4):870-884. PubMed ID: 29490247
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Solid-state NMR as a method to reveal structure and membrane-interaction of amyloidogenic proteins and peptides.
    Naito A; Kawamura I
    Biochim Biophys Acta; 2007 Aug; 1768(8):1900-12. PubMed ID: 17524351
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of early stage intermediates in the nucleation phase of Aβ aggregation.
    Zhai J; Lee TH; Small DH; Aguilar MI
    Biochemistry; 2012 Feb; 51(6):1070-8. PubMed ID: 22283417
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative studies of disordered proteins with similar sequences: application to Aβ40 and Aβ42.
    Fisher CK; Ullman O; Stultz CM
    Biophys J; 2013 Apr; 104(7):1546-55. PubMed ID: 23561531
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Homogeneous and heterogeneous tertiary structure ensembles of amyloid-β peptides.
    Ball KA; Phillips AH; Nerenberg PS; Fawzi NL; Wemmer DE; Head-Gordon T
    Biochemistry; 2011 Sep; 50(35):7612-28. PubMed ID: 21797254
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Disorder under stress: Role of polyol osmolytes in modulating fibrillation and aggregation of intrinsically disordered proteins.
    Verma G; Singh P; Bhat R
    Biophys Chem; 2020 Sep; 264():106422. PubMed ID: 32707418
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intrinsically disordered proteins (IDPs) in trypanosomatids.
    de Cássia Ruy P; Torrieri R; Toledo JS; de Souza Alves V; Cruz AK; Ruiz JC
    BMC Genomics; 2014 Dec; 15(1):1100. PubMed ID: 25496281
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficient construction of a diverse conformational library for amyloid-β as an intrinsically disordered protein.
    Salehi N; Amininasab M; Firouzi R; Karimi-Jafari MH
    J Mol Graph Model; 2019 May; 88():183-193. PubMed ID: 30708285
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Laminin inhibition of beta-amyloid protein (Abeta) fibrillogenesis and identification of an Abeta binding site localized to the globular domain repeats on the laminin a chain.
    Castillo GM; Lukito W; Peskind E; Raskind M; Kirschner DA; Yee AG; Snow AD
    J Neurosci Res; 2000 Nov; 62(3):451-62. PubMed ID: 11054814
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interference with Amyloid-β Nucleation by Transient Ligand Interaction.
    Zhang T; Loschwitz J; Strodel B; Nagel-Steger L; Willbold D
    Molecules; 2019 Jun; 24(11):. PubMed ID: 31195746
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Shear-induced amyloid formation of IDPs in the brain.
    Trumbore CN
    Prog Mol Biol Transl Sci; 2019; 166():225-309. PubMed ID: 31521233
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Native Hydrophobic Binding Interactions at the Transition State for Association between the TAZ1 Domain of CBP and the Disordered TAD-STAT2 Are Not a Requirement.
    Lindström I; Dogan J
    Biochemistry; 2017 Aug; 56(32):4145-4153. PubMed ID: 28707474
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Understanding Amyloid-β Oligomerization at the Molecular Level: The Role of the Fibril Surface.
    Barz B; Strodel B
    Chemistry; 2016 Jun; 22(26):8768-72. PubMed ID: 27135646
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Controlling {beta}-amyloid oligomerization by the use of naphthalene sulfonates: trapping low molecular weight oligomeric species.
    Ferrão-Gonzales AD; Robbs BK; Moreau VH; Ferreira A; Juliano L; Valente AP; Almeida FC; Silva JL; Foguel D
    J Biol Chem; 2005 Oct; 280(41):34747-54. PubMed ID: 16041062
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Common molecular pathogenesis of disease-related intrinsically disordered proteins revealed by NMR analysis.
    Shigemitsu Y; Hiroaki H
    J Biochem; 2018 Jan; 163(1):11-18. PubMed ID: 28992347
    [TBL] [Abstract][Full Text] [Related]  

  • 36. New Mechanism of Amyloid Fibril Formation.
    Galzitskaya O
    Curr Protein Pept Sci; 2019; 20(6):630-640. PubMed ID: 30686252
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of water in the primary nucleation of protein amyloid aggregation.
    Camino JD; Gracia P; Cremades N
    Biophys Chem; 2021 Feb; 269():106520. PubMed ID: 33341693
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Zinc as chaperone-mimicking agent for retardation of amyloid β peptide fibril formation.
    Abelein A; Gräslund A; Danielsson J
    Proc Natl Acad Sci U S A; 2015 Apr; 112(17):5407-12. PubMed ID: 25825723
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Peptide backbone modification in the bend region of amyloid-β inhibits fibrillogenesis but not oligomer formation.
    Johnson EC; Lanning JD; Meredith SC
    J Pept Sci; 2016 May; 22(5):368-73. PubMed ID: 27114096
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Insights into the aggregation mechanism of Aβ(25-40).
    Xiong J; JiJi RD
    Biophys Chem; 2017 Jan; 220():42-48. PubMed ID: 27856006
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.