These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 32703978)

  • 41. Do sequence neighbours of intrinsically disordered regions promote structural flexibility in intrinsically disordered proteins?
    Basu S; Bahadur RP
    J Struct Biol; 2020 Feb; 209(2):107428. PubMed ID: 31756456
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Role of electrostatic interactions in binding of peptides and intrinsically disordered proteins to their folded targets. 1. NMR and MD characterization of the complex between the c-Crk N-SH3 domain and the peptide Sos.
    Xue Y; Yuwen T; Zhu F; Skrynnikov NR
    Biochemistry; 2014 Oct; 53(41):6473-95. PubMed ID: 25207671
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Quantitative Binding Behavior of Intrinsically Disordered Proteins to Nanoparticle Surfaces at Individual Residue Level.
    Xie M; Li DW; Yuan J; Hansen AL; Brüschweiler R
    Chemistry; 2018 Nov; 24(64):16997-17001. PubMed ID: 30240067
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular Mechanisms of Alzheimer's Biomarker FDDNP Binding to Aβ Amyloid Fibril.
    Parikh ND; Klimov DK
    J Phys Chem B; 2015 Sep; 119(35):11568-80. PubMed ID: 26237080
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Compact fibril-like structure of amyloid β-peptide (1-42) monomers.
    Barz B; Buell AK; Nath S
    Chem Commun (Camb); 2021 Jan; 57(7):947-950. PubMed ID: 33399148
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mechanism of amyloid-β fibril elongation.
    Gurry T; Stultz CM
    Biochemistry; 2014 Nov; 53(44):6981-91. PubMed ID: 25330398
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of polyols on the structure and aggregation of recombinant human γ-Synuclein, an intrinsically disordered protein.
    Roy S; Bhat R
    Biochim Biophys Acta Proteins Proteom; 2018 Oct; 1866(10):1029-1042. PubMed ID: 30003969
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Semen-derived amyloidogenic peptides-Key players of HIV infection.
    Lee YH; Ramamoorthy A
    Protein Sci; 2018 Jul; 27(7):1151-1165. PubMed ID: 29493036
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ensemble characterization of an intrinsically disordered FG-Nup peptide and its F>A mutant in DMSO-d
    Reid KM; Sunanda P; Raghothama S; Krishnan VV
    Biopolymers; 2017 Nov; 108(6):. PubMed ID: 28734076
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dissection of the key steps of amyloid-β peptide 1-40 fibrillogenesis.
    Leite JP; Gimeno A; Taboada P; Jiménez-Barbero JJ; Gales L
    Int J Biol Macromol; 2020 Dec; 164():2240-2246. PubMed ID: 32771514
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Using chirality to probe the conformational dynamics and assembly of intrinsically disordered amyloid proteins.
    Raskatov JA; Teplow DB
    Sci Rep; 2017 Oct; 7(1):12433. PubMed ID: 28970487
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Arctic mutation accelerates Aβ aggregation in SDS through reducing the helical propensity of residues 15-25.
    Lo CJ; Wang CC; Huang HB; Chang CF; Shiao MS; Chen YC; Lin TH
    Amyloid; 2015 Mar; 22(1):8-18. PubMed ID: 25376379
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Chemometric Approach Toward Predicting the Relative Aggregation Propensity: Aβ(1-42).
    Zbacnik NJ; Henry CS; Manning MC
    J Pharm Sci; 2020 Jan; 109(1):624-632. PubMed ID: 31606543
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Critical role of interfaces and agitation on the nucleation of Abeta amyloid fibrils at low concentrations of Abeta monomers.
    Morinaga A; Hasegawa K; Nomura R; Ookoshi T; Ozawa D; Goto Y; Yamada M; Naiki H
    Biochim Biophys Acta; 2010 Apr; 1804(4):986-95. PubMed ID: 20100601
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ensemble Calculation for Intrinsically Disordered Proteins Using NMR Parameters.
    Kragelj J; Blackledge M; Jensen MR
    Adv Exp Med Biol; 2015; 870():123-47. PubMed ID: 26387101
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Arrest of beta-amyloid fibril formation by a pentapeptide ligand.
    Tjernberg LO; Näslund J; Lindqvist F; Johansson J; Karlström AR; Thyberg J; Terenius L; Nordstedt C
    J Biol Chem; 1996 Apr; 271(15):8545-8. PubMed ID: 8621479
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modulation of Abeta42 fibrillogenesis by glycosaminoglycan structure.
    Valle-Delgado JJ; Alfonso-Prieto M; de Groot NS; Ventura S; Samitier J; Rovira C; Fernàndez-Busquets X
    FASEB J; 2010 Nov; 24(11):4250-61. PubMed ID: 20585030
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Interactions of intrinsically disordered proteins with the unconventional chaperone human serum albumin: From mechanisms of amyloid inhibition to therapeutic opportunities.
    Martinez Pomier K; Ahmed R; Melacini G
    Biophys Chem; 2022 Mar; 282():106743. PubMed ID: 35093643
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The N-terminal region of amyloid β controls the aggregation rate and fibril stability at low pH through a gain of function mechanism.
    Brännström K; Öhman A; Nilsson L; Pihl M; Sandblad L; Olofsson A
    J Am Chem Soc; 2014 Aug; 136(31):10956-64. PubMed ID: 25014209
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structural, morphological, and kinetic studies of β-amyloid peptide aggregation on self-assembled monolayers.
    Wang Q; Shah N; Zhao J; Wang C; Zhao C; Liu L; Li L; Zhou F; Zheng J
    Phys Chem Chem Phys; 2011 Sep; 13(33):15200-10. PubMed ID: 21769359
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.