BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 32704157)

  • 1. Investigating the pathogenic SNPs in BLM helicase and their biological consequences by computational approach.
    Alzahrani FA; Ahmed F; Sharma M; Rehan M; Mahfuz M; Baeshen MN; Hawsawi Y; Almatrafi A; Alsagaby SA; Kamal MA; Warsi MK; Choudhry H; Jamal MS
    Sci Rep; 2020 Jul; 10(1):12377. PubMed ID: 32704157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and analysis of pathogenic nsSNPs in human LSP1 gene.
    Ali HM
    Bioinformation; 2019; 15(9):621-626. PubMed ID: 31787810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of functional SNPs in BARD1 gene and in silico analysis of damaging SNPs: based on data procured from dbSNP database.
    Alshatwi AA; Hasan TN; Syed NA; Shafi G; Grace BL
    PLoS One; 2012; 7(10):e43939. PubMed ID: 23056176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting the most deleterious missense nsSNPs of the protein isoforms of the human HLA-G gene and in silico evaluation of their structural and functional consequences.
    Emadi E; Akhoundi F; Kalantar SM; Emadi-Baygi M
    BMC Genet; 2020 Aug; 21(1):94. PubMed ID: 32867672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis of Bloom syndrome (BS) causing mutations in the BLM helicase domain.
    Rong SB; Väliaho J; Vihinen M
    Mol Med; 2000 Mar; 6(3):155-64. PubMed ID: 10965492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human RECQ Helicase Pathogenic Variants, Population Variation and "Missing" Diseases.
    Fu W; Ligabue A; Rogers KJ; Akey JM; Monnat RJ
    Hum Mutat; 2017 Feb; 38(2):193-203. PubMed ID: 27859906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical properties of naturally occurring human bloom helicase variants.
    Cueny RR; Varma S; Schmidt KH; Keck JL
    PLoS One; 2023; 18(6):e0281524. PubMed ID: 37267408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational Analysis of High-Risk SNPs in Human DBY Gene Responsible for Male Infertility: A Functional and Structural Impact.
    Nailwal M; Chauhan JB
    Interdiscip Sci; 2019 Sep; 11(3):412-427. PubMed ID: 29520635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-Silico Computing of the Most Deleterious nsSNPs in HBA1 Gene.
    AbdulAzeez S; Borgio JF
    PLoS One; 2016; 11(1):e0147702. PubMed ID: 26824843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Competition between the DNA unwinding and strand pairing activities of the Werner and Bloom syndrome proteins.
    Machwe A; Lozada EM; Xiao L; Orren DK
    BMC Mol Biol; 2006 Jan; 7():1. PubMed ID: 16412221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sgs1 truncations induce genome rearrangements but suppress detrimental effects of BLM overexpression in Saccharomyces cerevisiae.
    Mirzaei H; Syed S; Kennedy J; Schmidt KH
    J Mol Biol; 2011 Jan; 405(4):877-91. PubMed ID: 21111748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural Consequences of IRS-2 nsSNPs and Implication for Insulin Receptor Substrate-2 Protein Stability.
    Zia A; Shams S; Shah M; Afridi SG; Khan A
    Biochem Genet; 2023 Feb; 61(1):69-86. PubMed ID: 35727487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and functional analyses of disease-causing missense mutations in Bloom syndrome protein.
    Guo RB; Rigolet P; Ren H; Zhang B; Zhang XD; Dou SX; Wang PY; Amor-Gueret M; Xi XG
    Nucleic Acids Res; 2007; 35(18):6297-310. PubMed ID: 17878217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of human Bloom's syndrome helicase in complex with ADP and duplex DNA.
    Swan MK; Legris V; Tanner A; Reaper PM; Vial S; Bordas R; Pollard JR; Charlton PA; Golec JM; Bertrand JA
    Acta Crystallogr D Biol Crystallogr; 2014 May; 70(Pt 5):1465-75. PubMed ID: 24816114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Screening and insilico analysis of deleterious nsSNPs (missense) in human CSF3 for their effects on protein structure, stability and function.
    Guttula PK; Chandrasekaran G; Gupta MK
    Comput Biol Chem; 2019 Oct; 82():57-64. PubMed ID: 31272062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Telomere and ribosomal DNA repeats are chromosomal targets of the bloom syndrome DNA helicase.
    Schawalder J; Paric E; Neff NF
    BMC Cell Biol; 2003 Oct; 4():15. PubMed ID: 14577841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bloom syndrome and the underlying causes of genetic instability.
    Ababou M
    Mol Genet Metab; 2021 May; 133(1):35-48. PubMed ID: 33736941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization and mutational analysis of the RecQ core of the bloom syndrome protein.
    Janscak P; Garcia PL; Hamburger F; Makuta Y; Shiraishi K; Imai Y; Ikeda H; Bickle TA
    J Mol Biol; 2003 Jun; 330(1):29-42. PubMed ID: 12818200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting the functional and structural consequences of nsSNPs in human methionine synthase gene using computational tools.
    Desai M; Chauhan JB
    Syst Biol Reprod Med; 2019 Aug; 65(4):288-300. PubMed ID: 30676783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A computational in silico approach to predict high-risk coding and non-coding SNPs of human PLCG1 gene.
    Khan SM; Faisal AM; Nila TA; Binti NN; Hosen MI; Shekhar HU
    PLoS One; 2021; 16(11):e0260054. PubMed ID: 34793541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.